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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing simple 

and organized study content to all the learners. The SLMs are prepared on the 

framework of being mutually cohesive, internally consistent and structured as 

per the university’s syllabi. It is a humble attempt to give glimpses of the 

various approaches and dimensions to the topic of study and to kindle the 

learner’s interest to the subject 

 

We have tried to put together information from various sources into this book 

that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories and 

presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically update 

the content in the very interest of the learners. It may be added that despite 

enormous efforts and coordination, there is every possibility for some omission 

or inadequacy in few areas or topics, which would definitely be rectified in 

future. 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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BLOCK-2 FUNCTIONAL ANALYSIS 

 

Functional analysis was born in the early years of the twentieth century 

as part of a larger trend toward abstraction—what some authors have 

called the ―arithmetization‖ of analysis. This same trend toward 

―axiomatics‖ contributed to the foundations of abstract linear algebra, 

modern geometry, and topology. 

Finally we come to nonlinear functional analysis. In the past seven 

chapters we have been concerned with the properties of infinite 

dimensional spaces and linear operators including linear functionals 

between them. In some sense we were working on generalizations of 

linear algebra. In analysis one studies linear and nonlinear functions as 

well. Of course, there are far more nonlinear functions than linear 

functions. You just have to recall only degree one polynomials are linear 

and all polynomials of higher degree are nonlinear, let alone 

transcendental functions. In this chapter we give a very brief introduction 

to nonlinear functional analysis. The main theme is to extend results in 

calculus, especially in differentiation theory, to infinite dimensional 

settings. You will see that linearization plays a dominating role in the 

study. 

 

Several fixed point theorems are discussed, starting from the contraction 

principle, Brouwer fixed-point theorem on finite dimensional space and 

ending on Schauder fixed point theorem. Their applications are 

illustrated by examples. In the next section we develop calculus on 

Banach space. This is a huge topic which has been split into different 

branches of mathematics such as the calculus of variations, optimization 

theory, control theory, etc. 
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UNIT 8: HILBERT SPACE 
 

STRUCTURE 

8.0 Objetive 

8.1 Ntroduction 

8.2 Inner Product  

8.3 Inner Product And Norm  

8.4 Orthogonal Decomposition 

8.5 Complete Orthonormal Sets  

8.6 Let’s Sum up 

8.7 Keywords 

8.8 Questions For Review  

8.9 Suggested Readings 

8.10 Answers to Check Your Progress 

 

8.0 OBJECTIVE 
 

Understand the concept of Inner Product and relationship between inner 

product and norm, Enumerate the concept of Orthogonal Decomposition 

Understand Complete Orthonormal Sets 

8.1 INTRODUCTION 
 

The Euclidean norm is special among all norms defined in Rn for being 

induced by the Euclidean inner product (the dot product). A Hilbert 

space is a Banach space whose norm is induced by an inner product. An 

inner product enables one to define orthogonality, which in turns leads to 

far reaching conclusion on the structure of a Hilbert space. In particular, 

we show that there is always a complete orthonormal set, a substitute for 

a Hamel basis, in a Hilbert space. It is a natural, infinite dimensional 

analog of an orthonormal basis in a finite dimensional vector space. We 

conclude with a theorem which asserts that any infinite dimensional 

separable Hilbert space is ―isometric‖ to `2. Thus once again the 
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cardinality of the basis alone is sufficient to distinguish separable Hilbert 

spaces. 

 

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a 

diligent man, he still attended seminars, usually accompanied by his 

assistant Richard Courant. One day a visitor was talking on his new 

findings in linear operators on Hilbert spaces. The professor was puzzled 

first. Soon he grew impatient and finally he turned to Courant. ―Richard, 

what is a Hilbert space?‖ he asked loudly. 

 

8.2 INNER PRODUCT 
 

An inner product is a map: X × X ↦   for a vector space X over   

satisfying 

 

 

 

 

 

The pair (X, 〈   〉)  is called an inner product space. Note that (P1) and 

(P2) imply 

 

Example: In  n
 define the product 

 

 

 

  

It makes ( n
,〈   〉)  into an inner product space. It is called the Euclidean 

space when Fn = Rn and the unitary space when  n
 = ℂn

. 

 

Example:  2
 = {x = (x1, x2, x3, · · · ) : xk ∈   
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We should keep in mind that this product is finite is a consequence of 

Cauchy-Schwarz inequality. A variant of this space is the space of bi-

sequences: 

 

under the product 

 

 

 

Example: Recall that L
2
(a, b) is the completion of C[a, b] under the L

2
-

norm. On C[a, b] the L
2
-product 

 

 

 

Defines an inner product in C[a, b]. It is not hard to show that it has an 

extension to L2 (a, b). See next section for more details. 

 

Example: Any subspace of an inner product space is an inner product 

space under the same product. 

On F2 and the   2
-space there are Cauchy-Schwarz inequality. In fact, the 

most general setting for the Cauchy-Schwarz inequality is an inner 

product space. In the following we establish this inequality and use it to 

introduce the angle between two non-zero vectors and the concept of 

orthogonality. 

Proposition8.2.1. For any x and y in an inner product space (X, 〈   〉), 

 

Moreover, equality holds in this inequality if and only if x and y are 

linearly dependent. 

Proof. The inequality is trivial when x or y is a zero-vector, so let’s 

assume both x and y are non-zero. When the field is complex, let θ be a 

number satisfying hx, yi = e
iθ

|hx, yi|. Then 〈   〉 = |〈   〉 | where z = e
−iθ 

y is a non-negative number. When the field is real, no need to do this as 

〈   〉 is already real. 
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Just take z to be y. By (P3) 

 

 

This is a quadratic equation with real coefficients in α. Since it is always 

nonnegative, its discriminant is non-positive. In other words the 

inequality follows. 

 

 

When x and y are linearly dependent, there is some α ∈ F, x − αy = 0. 

Plugging in the inequality. we readily see that equality holds. On the 

other hand, when 〈   〉 〈   〉 = |〈   〉 |2, we can take α = 〈   〉 /〈   〉 

in〈         –     〉. By a direct computation, 0 = 〈         –    〉.. 

By (P3), x = αy. 

It follows from this inequality that 

 

 

 

For any two nonzero vectors x and y there is a unique θ ∈ [0, π] (the 

―angle‖ between x and y) satisfying  

 

 

 

Any two vectors x and y are orthogonal if 〈   〉 = 0. The zero vector is 

orthogonal to all vectors.  

 

8.3 INNER PRODUCT AND NORM 
 

There is a norm canonically associated to an inner product. Indeed, the 

function ||·|| : (X, 〈   〉) ↦ [0, ∞) 

given by 

 

 

defines a norm on X. To verify this, we only need to prove the triangle 

inequality since it is evident for the other two axioms. For x, y ∈ X 
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Notions such as limits, convergence, open/closed sets and continuity in 

an inner product space will be referred to this induced norm. In 

particular, we have 

Proposition 8.3.1. The inner product X × X ↦ [0, ∞) is a continuous 

function. 

Proof. For xn → x and yn → y, we want to show that 〈     〉→ 〈   〉. 

First of all, let n0 be a positive number satisfying ||yn – y|| ≤ 1, ∀ n ≥ n0. 

Then ||yn||≤ 1 + ||y|| and we have as n → ∞. 

 

 

A complete inner product space is called a Hilbert space. As any closed 

subspace of a Banach space is complete, any closed subspace of a Hilbert 

space is also a Hilbert space. Products of Hilbert spaces are Hilbert 

spaces. Moreover, the quotient space of a Hilbert space over a closed 

subspace is again a Hilbert space. For completion of an inner product 

space we have the following rather evident result. 

 

Proposition 8.3.2. Let (X, e k·e k) be the completion of (X, k·k) where 

k·k is induced from an inner product〈   〉. Then there exists a complete 

inner product on 〈   ̃〉. Which extends 〈   〉 and induces      ̃ 

when the reader runs through his/her list of normed spaces, he/she will 

find that there are far more Banach spaces than Hilbert spaces. However, 

one may wonder these Banach spaces are also Hilbert spaces, whose 

inner products are just too obscure to write down. A natural question 

arises: How can we decide which norm is induced by an inner product 
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and which one is not? The answer to this question lies on a simple 

property—the parallelogram identity. 

 

Proposition 8.3.3 (Parallelogram Identity). For any x, y in (X, 〈   〉), 

 

Proof. Expand and add up. 

 

 

 

 

 

This rule, which involves only the norm but not the inner product, gives 

a necessary condition for a norm to be induced by an inner product 

 

As application we first show that the || · || p-norm on  n
 (n ≥ 2) is 

induced from an inner product if and only if p = 2. Take x = (1, 1, 0, · · · , 

0) and y = (1, −1, 0, · · · , 0) in  n
. We have ||x||p = ||y||p = 2 

1/p
  and ||x + 

y||p = ||x – y||p = 2. If || · ||p is induced from an inner product, Proposition 

8.2.3 asserts which holds only if p = 2. 

 

 

 

 

Similarly, C[0, 1] does not come from an inner product. We take f(x) = 1 

and g(x) = x. Then 

 

 

 

Then 

 

 

Proposition 8.2.4. (a) For every x, y in a real inner product space X, we 

have 
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(b) On a real normed space (X, || · ||), the above identity defines an inner 

product on X if and only if the parallelogram identity holds. 

 

The identity in (a) is called the polarization identity. It shows how one 

can recover the inner product from the norm in an inner product space. 

 

Proof. (a) We have By subtracting, we get the polarization formula. 

 

 

 

 

(b) In view of Proposition 8.2.3, it remain to verify that the polarization 

identity defines an inner product under the validity of the parallelogram 

identity. In fact, (P2) and (P3) are immediate. We only need to prove 

(P1). By the parallelogram identity, 

 

2(||x ± z||
2
 + ||y||

2
) = ||(x ± z) + y||

2
 + ||(x ± z) – y||

2
. 

 

By subtracting 

 

2(||x + z||
2
 − ||x – z||

2
) = ||(x + y) + z||

2
 − ||(x + y) – z||

2
 + ||(x − y) + z||

2
 

− ||(x − y) – z||
2
. 

 

In terms of 〈   〉 , we have 〈         〉 + 〈       〉 = 2 〈   〉 for all x, y, 

z ∈ X.   Replacing x, y by (x + y)/2 and (x − y)/2 respectively, we have 

 

 

Letting y = 0, 〈    〉= 2hx/2, zi for all x, z. It follows that 

 

 

that is, 〈   〉 is additive in the first component. Next, we show that 

〈     〉 = α 〈   〉, for all α ∈ R. We observe that by induction and 2 

〈   〉= 〈    〉 we can show  〈   〉= 〈    〉for all n ∈ N. Using 〈   〉+ 

〈    〉= 〈   〉= 0 we deduce n 〈   〉 = 〈    〉for all n ∈ Z. Then m 
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〈     〉= 〈     〉+· · · + 〈     〉 (m times)= 〈   〉implies 1/m 

〈     〉= 〈   〉. So, 〈      〉 = 1/m 〈    〉= n/m 〈   〉 for any 

rational n/m. By continuity of the norm, 〈     〉= α 〈   〉, 

We have the following corresponding result when F = C, whose proof 

may be deduced from the real case.  

 

Proposition 8.3.5. (a) For any x, y in a complex inner product space X, 

we have the polarization identities 

  

 

 

 

 

(b) On a complex normed space X the polarization identities define an 

inner product on X which induces its norm if and only if the 

parallelogram identity holds. 

CHECK YOUR PROGRESS 

1. What is inner product space? 

 

 

 

2. Explain Parallelogram Identity 

 

 

 

8.4 ORTHOGONAL DECOMPOSITION 
 

Aside from finite dimensional subspaces,the problem does not always 

have a positive solution. Nevertheless, with the help of orthogonality, we 

show in this section that for a Hilbert space this problem always has a 

unique solution. An immediate consequence is the existence of 

complementary subspaces, a property which is not necessarily valid for 

Banach spaces. In fact, our result extends from subspaces to convex 

subsets. 
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Theorem 8.4.1. Let K be a closed, convex subset in the Hilbert space X 

and x0 ∈ X \ K. There exists a unique point x∗ ∈ K such that 

 

 

 

Proof. Let {xn} be a minimizing sequence in K, in other words, 

 

 

 

We claim that {xn} is a Cauchy sequence. For, by parallelogram identity, 

 

as n, m → ∞. Note that (xn + xm)/2 ∈ K by convexity. By the 

completeness of X and the closedness of K, x∗ = limn→∞ xn ∈ K. As the 

norm is a continuous function, we have d = kx0 − x∗k. Suppose x0 ∈ K 

also minimizes the distance. Then 

 

 

that’s, x' = x*.  

This theorem plays a fundamental role in convex analysis. But here we 

only consider the special case when K is a closed subspace. More can be 

said about the best approximation in this case. 

Theorem 8.4.2 (Best Approximation). Let Y be a closed subspace of a 

Hilbert space X and x0 a point lying outside Y . The point y0 which 

minimizes the distance between x0 and Y satisfies 
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at z = y0. Conversely, if z ∈ Y satisfies this condition, then z must be y0. 

When this holds 

 

  ||x0 − y0||
2
 + ||y0||

2
 = ||x0||

2
,     (1) 

 

Proof. When y0 minimizes ||y−x0|| among all y, it also minimizes 

||y−x0||
2
. For any y ∈ Y, y0 +εy ∈ Y , so the function 

 

     ϕ(ε) = ||x0 − y0 – εy||
2
 

 

attains a minimum at ε = 0. By expanding, we have 

 

 

 

Clearly 0 =  '(0) implies 

 

   Re 〈        〉= 0. 

 

Replacing y by iy, Im 〈        〉= 0. 

Conversely, if 〈        〉= 0 for all y in Y , we have 

 

 

 

 

 

which shows that y0 minimizes d(x0, Y ). 

 

Finally, let y1 also minimize the distance. By the above characterization, 

hx0 − y1, yi = 0 on Y . It follows that 
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This theorem has the following geometric meaning. For x0 outside Y , the 

projection point y0 is the unique point on Y so that ∆Ox0y0 forms a 

perpendicular triangle. 

For any closed subspace Y in a Hilbert space, the projection operator of 

X onto Y is given by 

 

 

  

We have been calling Px the best approximation of x in Y . Now we may 

also it the orthogonal projection of x on Y . It is easy to check that P ∈ 

B(X, Y ), P
2
 = P and ||P|| = 1. For instance, to show that P is linear, we 

just have to verify the obvious identity 〈                   

         〉= 0 on Y . For then it follows from the above characterization 

that P (αx1 + βx2) = αPx1 + βPx2. 

 

We also note that a more general characterization holds: For any x in X, 

not only those in Y , z = Px if and only if z satisfies 〈        〉= 0 on Y .  

We will discuss two consequences of the best approximation theorem. 

The first is the self-duality property of the Hilbert space.  

To each z in the Hilbert space X we associate a bounded linear functional 

Λz given by Λzx = 〈    〉. It is routine to verify that Λz belongs to X' with 

operator norm ||Λz|| = ||z||. The mapping Φ defined by mapping z to Λz 

sets up a sesquilinear map from X to X0. A map T is sesquilinear if T 

(αx1 + βx2) =  ̅Tx1 +  ̅Tx2. Sesquilinear and linear are the same when the 

field is real, and they are different when the field is complex. The 

following Frech´et-Riesz theorem shows that Φ is surjective, so it is a 

normpreserving, sesquilinear isomorphism between X and X0. A Hilbert 

space is self-dual in the sense that every bounded linear functional on it 

can be identified with a unique point in the space itself. 

 

Theorem 8.4.3. Let X be a Hilbert space. For every Λ in X', there exists 

a unique z in X such that Λ z = Λ and ||z||= ||Λ||. 

Next, we consider direct sum decomposition in a Hilbert space. Recall 

that a direct sum decomposition of a vector space, X = X1   X2, where 

X1 and X2 are two subspaces, means every vector x can be expressed as 
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the sum of one vector x1 from X1 and the other x2 from X2 in a unique 

way. From the uniqueness of the representation one can show that the 

maps x ↦ x1 and x ↦ x2 are linear maps from X onto X1 and X2 

respectively. They are called projection maps associated to the direct 

sum X1   X2. 

Direct sum decomposition is clearly useful in the study of vector spaces 

since it breaks down the space to two smaller (and hence simpler) 

subspaces. When the space is normed, it is desirable to ensure that such 

decomposition respects the topology in some sense. Thus we may 

introduce the definition that the direct sum is a ―topological direct sum‖ 

if the projection maps: x ↦ x1 and x ↦ x2 are bounded from X to Xi, i = 

1, 2. When the space is complete, certainly we would like our 

decomposition to break into Banach spaces. We prefer Xi, i = 1, 2, to be 

closed subspaces. An advantage of this assumption is that the projections 

are automatically bounded, as a direct consequence of the closed graph 

theorem, so any direct sum decomposition of a Banach space into closed 

subspaces is topological. 

We now are left with question: Given any closed subspace X1 of a 

Banach space X, can we find a closed subspace X2 such that X = X1   

X2? Unfortunately, except when X1 is of finite dimension, a 

complementary closed space X2 does not always exist. However, this is 

always true for Hilbert spaces. In fact, a deep theorem asserts that if a 

Banach space possesses the property that any closed subspace has a 

topological complement, then its norm must be equivalent to a norm 

induced by a complete inner product. 

In fact, for any closed, proper subspace X1, we define its ―orthogonal 

subspace‖   
   to be 

 

It is clear that   
   is a closed subspace. (According to Riesz-Frechet 

theorem,   
   is the annihilator ofX1.) Thus we have the decomposition 

 

x = P x + (x − P x) ∈ X1 +   
   where P is the orthogonal projection 

operator on X1. We claim that this is a direct sum. For, if x0 ∈ X1 ∩   
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then 〈     〉 = 0, for all x1 ∈ X1. As x0 also belongs to X1, taking x1 = x0, 

we get ||x0||
2 
= 〈     〉= 0. Hence X1 ∩   

  = {0}. Moreover, we observe 

that the bounded linear operator P and I − P are precisely the projection 

maps of the direct sum X1     
 .We have proved the following theorem 

on the orthogonal decomposition in a Hilbert space. 

 

Theorem 8.4.4. For every closed subspace X1 of a Hilbert space X, X = 

X1     
 .Moreover, the projection operator P : X ↦ X1 maps x to Px 

which is the unique point in X1 satisfying ||x − P x|| = d(x, X1) and the 

projection Q : X ↦   
  is given by Qx = x − P x. 

8.5 COMPLETE ORTHONORMAL SETS 
 

We start by considering the following question: How can we determine P 

x0 when x0 and the subspace Y are given? It is helpful to examine this 

question when X is the n-dimensional Euclidean space. Let {x1, · · · , xm} 

be a basis of Y . Any projection y0 has the expression y0 = ∑     
 
   . 

From Theorem 8.3.2 we have 〈           〉= 0 for each k = 1, · · · , m. It 

amounts to a linear system for the unknown α'js: 

 

 

 

The system assumes a simple form when {xk} forms an orthonormal set. 

We immediately solve this system to get y0 = ∑ 〈      〉 . This example 

suggests it is better to consider orthonormal spanning sets in Y. 

 

Lemma 8.5.1 (Bessel’s Inequality). Let S be an orthonormal set in the 

Hilbert space X. Then for each x ∈ X, 〈    〉= 0 except for at most 

countably many xα ∈ B. Moreover, for any sequence {αk} from the index 

set B 

 

 

 

Proof. Step 1: Let      
 be a finite orthonormal set. For x ∈ X, we claim 
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For, let y =  ∑ 〈    〉
 
     . Then 〈      〉= 0, for all k = 1, · · · , N, 

implies that y is the orthogonal projection of x onto the space hx1, · · · , 

xNi. As ||y||
2
 = ∑  〈    〉   

     

 

 

 

Step 2: Let x ∈ X and l a natural number. We claim that the subset Sl of S 

 

 

is a finite set. For, picking     
, · · · ,    

 many vectors from Sl and 

applying Step 1, we get 

 

 

 

 

It follows that the cardinality of Sl cannot exceed ||x||
2
l
2
. 

Step 3: Only countably many terms 〈    〉are non-zero. Let Sx be the 

subset of S consisting of all xα’s such that 〈    〉is non-zero. We have 

the decomposition Since each Sl is a finite set, Sx is countable. 

 

 

 

Now the Bessel’s inequality follows from passing to infinity . 

 

Now we can give an answer to the question posed in the beginning of 

this section. 

 

Theorem 8.5.2. Let Y be a closed subspace in the Hilbert space X. 

Suppose that S is an orthonormal subset of Y whose linear span is dense 

in Y. Then for each x, its orthogonal projection on Y is given by 

∑ 〈    〉
 
     . where {xk} is any ordering of all those xα in S with non-

zero 〈    〉. 
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Proof. First of all, we need to verify that the sum ∑ 〈    〉
 
    is 

convergent. By the completeness of Y it suffices to show that {yn} ≡ 

{∑ 〈    〉
 
   . } is a Cauchy sequence. Indeed, we have 

 

 

 

 

 

By the Bessel’s inequality it is clear that the right hand side of this 

inequality tends to zero as n, m → ∞. Therefore, {yn} is a Cauchy 

sequence. Now using the characterization of the orthogonal projection 

stated in Theorem 8.3.2 and the continuity of the inner product, we 

conclude the proof of this theorem. 

After proving that the sum ∑ 〈    〉
 
    is the projection of x on Y , we 

see that this summation is independent of the ordering of those non-

zero〈    〉 .(You may also deduce this result by recalling rearrangement 

does not change the limit of an absolutely convergent series.) Therefore 

we can comfortably write it in the form ∑ 〈    〉 
   without causing any 

confusion. 

The discussion so far motivates us to introduce a more replacement of 

the Hamel basis for Hilbert spaces.  

 

A subset B in a Hilbert space is called a complete orthonormal set if it 

satisfies (a) it is an orthonormal set, that is, for all x ≠ y ∈ B,〈   〉= 0, 

and ||x|| = 1, and (b) 〈 〉 = X. The conditions are different from those for 

a basis. In contrast, for a basis B we require (a)’ all vectors in B is 

linearly independent, and (b)’ hBi = X. It is an exercise to show that (a) 

implies (a)’, but (b) is weaker than (b)’. Some authors use the 

terminology ―an orthonormal basis‖ instead of ―a complete orthonormal 

set‖. We prefer to use the latter. 

 

Theorem 8.5.3 . Every non-zero Hilbert space admits a complete 

orthonormal set. 

 

Proof. Let   be the collection of all orthonormal sets in X. Clearly F is 
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non-empty and has a partial order by set inclusion. For any chain   in   , 

clearly 

 

 

 

is an upper bound of   . By Zorn’s lemma,   has a maximal element B. 

We claim that B is a complete orthonormal set. First of all, B consists of 

normalized vectors orthogonal to each other, so (a) holds. To prove (b), 

let’s assume there is some z not in 〈 〉. By orthogonal decomposition, z' 

= (z − Pz)/||z – Pz|| where P is the projection operator on 〈 〉 is a unit 

vector perpendicular to 〈 〉. It follows that B∪ {z0} ∈   , contradicting 

the maximality of B. 

We end this section with some criteria for a complete orthonormal set. 

 

Theorem 8.5.4. Let B be an orthonormal set in the Hilbert space X. The 

followings are equivalent: 

 

 

 

 

 

 

 

(c) is called the (Parseval’s identity). In other words, the Bessel’s 

inequality holds on every orthonormal set, but the Parseval’s identity 

holds only when the set is complete. 

Proof. (a)⇒(b): When 〈 〉  = X, the orthogonal projection beomes the 

identity map, so (b) holds by Theorem 8.4.2. 

(b)⇒ (c) 

 

 

 

 

as n → ∞, by Theorem 8.4.2. 

(c)⇒ (d): Obvious. 
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(d)⇒ (a): Suppose on the contrary 〈 〉 is strictly contained in X. We can 

find a non-zero x0 ∈ X\〈 〉 such that 〈     〉= 0, for all xα ∈ B. However, 

this is impossible by (d). 

 

CHECK YOUR PROGRESS 

3.Explain: Every non-zero Hilbert space admits a complete orthonormal 

set 

 

 

 

4. State projection operator 

 

 

 

8.6 LET’S SUM UP 
 

Many of the applications of Hilbert spaces exploit the fact that Hilbert 

spaces support generalizations of simple geometric concepts 

like projection and change of basis from their usual finite dimensional 

setting. In particular, the spectral theory of continuous self-adjoint linear 

operators on a Hilbert space generalizes the usual spectral 

decomposition of a matrix, and this often plays a major role in 

applications of the theory to other areas of mathematics and physics. 

8.7 KEYWORDS 
 

Normalized vectors - The normalized vector of is a vector in the same 

direction but with norm (length) 1 

Identity - an identity is an equality relating 

one mathematical expression A to another mathematical expression B, 

such that A and B (which might contain some variables) produce the 

same value for all values of the variables within a certain range of 

validity. 
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Defines - being defined as , where both and are valid syntactic 

strings, means that can be replaced by wherever it occurs without 

affecting the meaning of the sentence.  

Validity - The validity of a logical argument refers to whether or not the 

conclusion follows logically from the premises, i.e., whether it is 

possible to deduce the conclusion from the premises and the allowable 

syllogisms of the logical system being used 

 

8.8 QUESTIONS FOR REVIEW 
 

1. Establish the identity 

 

 

for x, y, and z in an inner product space. 

2. Show that (C[0, 1], k · kp) is not induced from any inner product for p 

∈ [1, ∞] \ {2} 

3. Let X be a Hilbert space. Show that if {xn} weakly converges to x, 

that’s, Λxn → Λx, ∀Λ ∈ X0, 

then xn → x provided ||xn|| → ||x||. 

4. Find the orthogonal projection of (or the best approximation to) the 

function f onto the subspace spanned by cos x and 1 − 2x in L
2
(−π, π) 

where f is (a) ex and (b) cos 6x. 
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8.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide statement of proposition and proof – 8.2.1  

2. Provide statement and proof – 8.3.3  

3. Refer section below – 8.4.2 

4. Provide proof – 8.5.3 
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UNIT 9:  STRUCTURE THEOREM & 

COMPACT, SELF-ADJOINT 

OPERATOR IN HILBERT SPACE 
 

STRUCTURE 

9.0 Objective 

9.1 Introduction 

9.2 Structure Theorem 

9.3 Adjoint Operators 

9.4 Compact, Self-Adjoint Operators  

9.5 Let’s Sum up 

9.5 Keywords 

9.7 Questions 

9.8 Suggested Readings 

9.9 Answers To Check Your Progress 

 

9.0 OBJECTIVE 
 

Understand the concept of Structure Theorem  

Comprehend the Adjoint Operators 

Understand the Compact, Self-Adjoint Operators  

 

9.1 INTRODUCTION 
 

Recall that in linear algebra we showed that two finite dimensional 

vector spaces are linearly isomorphic if and only if they have the same 

dimension. That means there is only one invariant, the dimension, to 

distinguish vector spaces. A similar result holds in a (separable) Hilbert 

space. We prove in below that every separable Hilbert space has a 

countable complete orthonormal set. Consequently separable Hilbert 

spaces are distinguished by their cardinality. 
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 To have a taste of the richness of operator theory, here we cast our 

attention on a special class of bounded linear operators, namely, 

compact, self-adjoint ones in Hilbert spaces. Our main result is a 

structural theorem stating that the eigenvectors of a compact, self-adjoint 

operators form a complete orthonormal set. This is an infinite 

dimensional generalization of the theorem of reduction to principal axes 

for self-adjoint matrices in linear algebra. Compact, self-adjoint 

operators come up naturally in differential and integral equations. In the 

last section we show how it is applied to the boundary value problems of 

second order ordinary differential equations. 

9.2 STRUCTURE THEOREM: 
 

Proposition 9.2.1. A Hilbert space has a countable complete 

orthonormal set if and only if it is separable in its induced metric. 

 

Proof. Let B =      
  be a complete orthonormal set of X. By definition, 

the set 〈 〉 is dense in X. However, consider the subset S = {x ∈ 〈 〉 : x is 

a linear combination of B with coefficients in Q or Q + iQ depending on 

F = R or C}. It is clear that S = 〈 〉  = X. 

On the other hand, let C be a countable, dense subset of X. We can write 

it as a sequence {x1, x2, x3, · · · }. Step by step we can throw away 

vectors which are linearly dependent of t he previous ones to get a subset 

{y1, y2, y3, · · · } which consists of linearly independent vectors and yet 

still spans X. Now, apply the Gram-Schmidt process to this subset to 

obtain an orthonormal set {z1, z2, z3, · · · }. From construction we have 

that 〈                  〉= 〈                  〉 so {z1, z2, z3, · · · } is a 

complete orthonormal set. 

 

Theorem 9.2.2. Every infinite dimensional separable Hilbert space X is 

the same as  2
. More precisely, there exists an inner-product preserving 

linear isomorphism Φ from X to  2
. 

Proof. Pick a complete orthonormal set      
  of X whose existence is 

guaranteed by Proposition 9.1.2.Then for every x ∈ X, we have x =  

∑〈    〉   . Define the map Φ : X ↦  2
by Φ(x) = (a1, a2, · · · ) where ak 

= 〈    〉. By Theorem 9.1.2 we know that Φ is a norm-preserving linear 
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map from X to  2
. It is also onto. For, let {ak} be an l

2
-sequence. Define 

yn = ∑     
 
    Using ||yn –ym||

2
 = ∑   

  
   → 0 as n, m → ∞, yn 

converges in X to ∑     
 
 . Clearly, 〈    〉 = ak, so Φ is onto. Finally, it 

is also inner-product preserving by polarization. 

We end this section with a famous example of a complete orthonormal 

set. 

First, Let L
2
((−π, π)) be the completion of C([−π, π]) under the L

2
-

product. For f, g ∈ C([−π, π]) 

over the complex field, the product is given by 

 

 

 

The set 

 

 

is a countable set consisting of orthonormal vectors: 

 

 

 

 

 

 

 

 

For f ∈ L
2
((−π, π)), we define its Fourier series to be 

 

 

and write f ∼ Pn cneinx. We know from previous discussions that this 

series is a well-defined function in L
2
((−π, π)). In fact, it is the 

orthogonal projection of f onto the closed subspace 〈 〉. The 

completeness of B is a standard result in Fourier Analysis. Here we give 

a quick proof by using Weierstrass’ approximation theorem in the plane. 

That is, for any continuous function f in the unit disk there exists {pn(z)}, 
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where each pn is a polynomial so that {pn} tends to f in supnorm. 

Observe any 2π-periodic function f in [−π, π] induces a function g ∈ 

C(S1) where S1 = {e
iθ

 : θ ∈ 

[−π, π]} is the unit circle in the plane by g(e
iθ

) = f(θ). Extend g as a 

continuous function in the closed disc D = {(x1, x2) :   
 +   

 + ≤ 1} and 

denote it by the same g. For ε > 0, by Weierstrass’ theorem there exists a 

polynomial p(x1, x2) such that ||p – g||∞, ̅ < ε. When restricted to S
1
 we 

obtain 

 

As p(x1, x2) (regarded as a function of x in [−π, π]) is just a linear 

combination of functions in B, this shows that 〈  〉is dense in the 

subspace of periodic functions in C([−π, π]) under the sup-norm. As the 

sup-norm is stronger than the L
2
-norm, 〈 〉 is also dense in this subspace 

in L
2
-norm. Now, for any L

2
-function f, we can find a continuous 

function f1 ∈ C[−π, π] such that ||f − f1||
2
 < ε. By modifying the value of 

f near endpoints we can find another continuous f2, which is now 

periodic, ||f1 − f2|| < ε. 

 

Finally, there exists a trigonometric polynomial p such that ||f2 – p||
2
 < ε. 

All together we obtain ||f – p||
2
 ≤ ||f − f1||

2
 + ||f1 − f2||

2
 + ||f2 – p||

2
 < 3ε. 

We conclude that B forms a complete orthonormalset in L
2
((−π, π)). In 

particular, for every L
2
-functions, its Fourier series converges to f in L

2
-

norm,and the Parseval’s identity  holds. 

 

 

 

 

For a real function f, the Fourier series is usually expressed in real form, 
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where 

 

and you can write down the corresponding Parseval’s identity. 

 

9.3 ADJOINT OPERATORS 
 

Let T ∈ B(X1, X2) where X1 and X2 are Hilbert spaces over the same 

field. We construct a bounded linear operator called the adjoint of T, T*, 

from X2 to X1 as follows. For any y ∈ X2, the map x ↦ 〈    〉X2 is linear 

and bounded, and hence defines an element in X1'. By self-duality there 

exists a unique x* in X1 such that 〈    〉X2 = 〈    ∗〉X1. We define the 

adjoint of T to be the map T*y = x*. 

Then 

 

 

 

holds. We shall drop the subscripts in the inner products. 

 

Proposition 9.3.1. Let T be in B(X1, X2) where X1 and X2 are Hilbert 

spaces. Then 

 

 

 

 

 

Proof. (1) is straightforward from definition. Next we verify linearity. 

For any y1, y2 and scalars α and β, by (1) 
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Finally, by self-duality, 

 

 

 

so ||T*|| ≤ ||T||. The reverse inequality follows from (1). 

 

Other elementary properties of T ∗ are contained in the following 

proposition, whose proof is left to you. 

 

Proposition 9.3.2. Let T, T1, and T2 ∈ B(X1, X2) where X1 and X2 are 

Hilbert spaces. 

 

Consider T ∈ L( n
,  n

) where {e1, · · · , en} and {f1, · · · , fm} denote the 

canonical bases in  n
 and  m

respectively. Then Tej =  ∑    
  

 
  where 

(   
) is the matrix associated with T , and T*fk = ∑    

  
 
  where (   

) is 

the matrix associated with T*. Letting x = ∑     
 
   and y = ∑     

 
   , 

then 

 

 

 

  

From 〈    〉= 〈   ∗ 〉= we conclude (bij) = (aji). 

 

So the matrix associated with T ∗ is the adjoint matrix of the matrix 

associated with T . This justifies the terminology of the adjoint of a linear 

operator. Let X be a Hilbert space. A bounded linear operator on X to 

itself is called self-adjoint if T*= T . For T ∈ B( n
) its associated matrix 

satisfies (ajk) = (akj). That is to say, it is a self-adjoint matrix. 

When the scalar field is real, the matrix is called symmetric. In some 
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texts, the terminology a ―symmetric operator‖ is used instead of a ―self-

adjoint operator‖, and a self-adjoint operator is reserved for a densely 

defined unbounded operator whose adjoint is equal to itself. We never 

touch upon unbounded operators, so this definition will not come up; 

there is no chance to mess things up. 

A basic property of a self-adjoint operator is that its eigenvalues must be 

real. Recall that λ is an eigenvalue of a linear operator T if there exists a 

non-zero vector x satisfying Tx = λx. The eigenspace Φλ = {x ∈ X : Tx = 

λx} forms a subspace of X and it is closed when T is bounded. 

 

Proposition9.3.3. Let T ∈ B(X) be self-adjoint where X is a Hilbert 

space. 

(1) All eigenvalues of T are real; and 

(2) Eigenvectors corresponding to distinct eigenvalues are orthogonal. 

 

Proof. (1). If x is an eigenvector for the eigenvalue λ, then 

 

 

 

By self-adjointness, λ 〈    〉 =  ̅ 〈    〉  which implies λ is real. 

 

(2). Let Tx1 = λ1x1 and Tx2 = λ2x2, where λ1 and λ2 are distinct. We have 

 

 

By self-adjointness, λ1〈     〉 = λ2 〈     〉  and, as the eigenvalues are 

distinct, 〈     〉 = 0 

 

Proposition 9.3 .4. Let T ∈ B(X) be self-adjoint where X is a Hilbert 

space. Then 

 

||T || = sup{|〈    〉 | : x ∈ X, ||x|| = 1.} 

 

Proof. Denote the right hand side of the above formula by M. As 
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|〈    〉| ≤ ||Tx||||x|| ≤ ||T ||||x||
2
, 

 

taking supremum over all unit x shows that M ≤ ||T||. 

 

On the other hand, from 〈    〉= 〈    〉= 〈    〉̅̅ ̅̅ ̅̅ ̅̅ ̅we know that 〈    〉 ∈ 

ℝ, for all x. By a direct expansion 

 

because T is self-adjoint. As a result, 

 

by the parallelogram identity. Taking x, kxk = 1, and y = Tx/kTxk(6= 0) 

 

 

 

whence ||T|| = M. 

 

Remark We shall use the following remarks in next section: 

(a) sup{|〈    〉= | : ||x|| = 1} may be expressed as 

(b) From this proposition, we know that T ≡ 0 if 〈    〉= = 0 for all x. 

 

9.4 COMPACT, SELF-ADJOINT 

OPERATORS 
 

A linear operator T ∈ L(X1, X2) where X1 and X2 are normed spaces is 

called compact if whenever {xn}, ||xk||≤ M for some M, {Txk} has a 

convergent subsequence. In other words, the image of a bounded 

sequence under a compact operator has the Bolzano-Weierstrass 
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property. A compact operator is necessarily bounded. It is like a 

―regulator‖ which produces finite dimensional behavior. All compact 

operators form a closed subspace of B(X) where X is a Banach space 

under the operator norm. Furthermore, it is a two-sided ideal in the sense 

that ST and TS are compact if T is compact and S is bounded. The 

transpose (or the adjoint when the space is Hilbert) of a compact operator 

is again compact. It is a good exercise to prove all these facts. A common 

class of compact operators is provided by integral operators. Letting K ∈ 

C([a, b]2) and considering the operator 

 

 

 

 

we saw in Chapter 4 that I is bounded on C[a, b] as well as L
p
((a, b)), p ∈ 

[1, ∞). (Forgive me for abusing the same notation.) We claim that it is 

compact on any one of these spaces. Let’s take it to be L
p
((a, b)), p ≥ 1. 

Let {fj} be a sequence in L
p
((a, b)), ||fj||p ≤ M, say. By the definition of 

L
p
-space, we can find gj ∈ C([a, b]) such that ||fj – gj||p < 1/j. Then 

 

 

 

makes sense. As K is uniformly continuous, for any ε > 0 there 

exists δ such that |K(x, y)−K(x', y')| < ε for  

 

 

So,  

 

 

 

 

 

where q is conjugate to p. We conclude that {   
} is equicontinuous in [a, 

b]. Similarly we can show that it is also uniformly bounded. Hence by 

Arzela-Ascoli theorem there exists {    
} converging uniformly to some 
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h ∈ C[a, b]. As uniform convergence is stronger than L
p
-convergence, we 

have 

 

 

as k → ∞, so I is compact. 

Another subclass of compact operators is provided by operators of finite 

rank. A bounded linear operator T is an operator of finite rank if its 

image is a finite dimensional subspace. Since {   
} is a bounded subset 

in a finite dimensional space whenever {xk} is bounded, clearly the 

Bolzano-Weierstrass property holds for it. In practise most compact 

operators are limits of operators of finite rank. For operators on Hilbert 

spaces, this can be established without much difficulty. For many years it 

was conjectured that this be true on Banach spaces, but now people have 

found sophisticated counterexamples even in a separable Banach space. 

 

Here we consider linear operators in a Hilbert space to itself which is 

self-adjoint and compact simultaneously. The study of self-adjoint, 

compact operators was due to Hilbert and is an early success of 

functional analysis. There is a lot of information one can retrieve. 

 

Proposition 9.4.1. Let T be compact, self-adjoint in B(X) where X is a 

Hilbert space X. Then 

 

(1) For any non-zero eigenvalue λ, the eigenspace of λ, Φλ, is a finite 

dimensional subspace. 

(2) If eigenvalues {λk}, where all λk’s are all distinct, converges to λ∗, 

then λ∗ = 0. 

 

Proof. The following proof works for (1) and (2). Assume on the 

contrary that there are infinitely many distinct eigenvectors. Let λj be a 

sequence of eigenvalues of T , λj → λ* ≠ 0 and Txj = λjxj, ||xj|| = 1 where 

{xj} forms an orthonormal set. According to Proposition 9.2.3 (b), ||xj – 

xk|| =√ . On the other hand, by compactness there exists     
 → x0. That 

is to say, λj||xj|| → x0. By assumption, λjk → λ*. 
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It follows that 

 

 

  

So {   
} is a Cauchy sequence and ||   

 –    
|| → 0 as jk ≠ jl → ∞, 

contradicting ||   
 –    

|| =√ . 

 

Lemma 9.4.2. Let T be compact, self-adjoint in B(X) where X is a 

Hilbert space X. Then 

 

 

 

 

is an eigenvalue of T provided it is positive. Similarly, 

 

 

 

 

is an eigenvalue of T provided it is negative. 

 

Proof. It suffices to consider the first case. Let {xk} be a sequence 

satisfying ||xk|| = 1 and 〈       〉→ M. By compactness, there exists 

    
 → x0 in X. 

 

Consider the self-adjoint operator T − mI. By Remark (a) after 

Proposition 9.2.4, ||T – mI|| = max{M − m, m − m} = M − m. We have  
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as k → ∞. Restricting to the subsequence {   
 } to get Txk 

 

                                          
     

    

 

As     
 → x0,    

 → x0/M, x0 ≠ 0, and so by continuity     
 → Tx0/M. 

We conclude that x0 is an eigenvector to to the eigenvalue M. 

The following is the main result of this chapter. It is an infinite 

dimensional version of the reduction to principal axes for a self-adjoint 

matrix. It is also called the spectral theorem for compact, self-adjoint 

operators. 

 

Theorem 9.4.3. Let T be compact, self-adjoint in B(X) where X is Hilbert 

space. 

 

(1) Suppose 〈     〉> 0 for some x ∈ X. Then  

 

 

 

is a positive eigenvalue of T. 

 

(2) Recursively define, for n ≥ 2 

 

 

 

 

where xj satisfies Txj = λjxj, ||xj|| = 1, j = 1, 2,··· , n − 1. Then λn is a 

positive eigenvalue of T as long as the supremum is positive. The 

collection is finite when there exists some N such that 

〈    〉≤ 0, for all x ⊥〈          〉 . 

Otherwise, there are infinitely many λj’s and λ1 ≥ λ2 ≥ ··· → 0. 

 

(3) For any ―eigenpair‖ (λ, z) where λ > 0, λ must equal to λj for some j 

and z belong to the subspace spanned by all xj. (We note that to the same 

λj there could be more than one corresponding eigenvectors by the above 

construction.) 
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(4) Similarly, all negative eigenvalues are given by 

 

 

 

 

and, for n ≥ 2, 

 

 

 

 

if 〈     〉 < 0 for some x. Here xj' is the normalized eigenvector of λj'. 

(5) Let  〈     
 〉 be the span of all normalized eigenvectors. Then 

 

 

 

where X' is the zero-eigenspace of T . 

 

Proof. (1) follows directly from Lemma 9.3.2. 

 

(2) Consider the closed subspace X1 = 〈  〉⊥. We check that T : X1 ↦ X1. 

For, if x ⊥ x1, then 0 = 〈     〉 = 〈     〉= λ1 〈    〉, so Tx ⊥ x1. It is 

routine to check that T : X1 ↦ X1 is still a compact, self-adjoint operator. 

By applying Lemma 9.3.2 again 

 

 

 

 

is an eigenvalue provided the supremum is positive. We may repeat this 

process to obtain the other eigenvalues until there exists an N such that 

〈     〉 ≤ 0, for all x ⊥ 〈          〉. Otherwise, we have an infinite 

sequence of decreasing eigenvalues. By Proposition 6.5, this sequence 

must converge to zero.  

(3) Suppose λ is a positive eigenvalue with eigenvector  ̃. If (λ,  ̃.) does 

not come from the above construction, we must have λ ≤ λ1 and there 
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exists some n such that λ ∈ (λn+1, λn] or (0, λN ] (when N < ∞). Consider 

the former first. When λ is not equal to λn, x e is orthogonal to all xn. 

However, by the construction of λn+1, we have 

 

 

contradiction holds. When λ = λn, let us assume λn−K > λn−K+1 = λn−K+2 = 

··· = λn > λn+1 because of finite multiplicity. The modified vector  ̅ ≡  ̃ e 

− P ̃ where P is the orthogonal projection of  ̃ to the subspace spanned 

by {xn−K+1,··· , xn} is orthogonal to all {x1, x2,··· , xn} and still satisfies Tx 

= λx. Without loss of generality we may assume x =  ̃. Then the above 

argument still produces a contradiction. A similar argument works for λ 

∈ (0, λN ]. 

 

(4) The proof is left to the reader as an exercise. 

 

(5) By the above construction we see that for all x in Z ≡ 〈     
 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊥,  

〈    〉= 0. It is readily checked that T maps Z to itself. By Remark (b) 

after Proposition 6.4 we conclude that so T ≡ 0 on Z. In other words, 

〈     
 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊥,  is the 0-eigenspace. By the theorem on orthogonal 

decomposition 

 

 

 

This theorem may be viewed as the statement: Any matrix representation 

of a compact, self-adjoint operator can be diagonalized by a ―rotation‖. 

Let us take the field to be real and consider T a symmetric linear 

transformation on the Euclidean space ℝn
. For any orthonormal basis 

{x1,··· , xn}, the matrix A ≡ (ajk), Txk = ∑       , is the matrix 

representation of T with respect to this basis. From linear algebra we 

know there exists an orthogonal matrix R such that R* AR is equal to a 

diagonal matrix Λ. (An orthogonal matrix R satisfies R*R = I by 

definition.) Letting y = Rx, the matrix representation of T with respect to 

the new orthonormal basis {y1, · · · , yn} is the matrix Λ ≡ (λjδjk) where yj 

is the eigenvector of the eigenvalue λj.  
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Now, for a compact, symmetric operator on an infinite dimensional 

Hilbert space the same thing happens. Let us assume for simplicity that 

zero is not an eigenvalue. Then for any complete orthonormal set {xj} the 

operator T is represented by an infinite matrix A ≡ (ajk), j, k ≥ 1, defined 

similarly as above. Let {λ1, λ2, . . . , } be an ordering of all eigenvalues of 

T according to |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . and zj the corresponding 

(orthonormal) eigenvectors. According to the theorem, {zj} forms a 

complete orthonormal set and the mapping defined by zj = 

∑        defines an ―orthogonal matrix‖ R ≡ (rjk) which satisfies R*R = 

I. We have R∗AR = Λ where Λ is the diagonal matrix consisting of 

eigenvalues. 

Consider the set {x : ∑         = 1} where (ajk) is positive definite. The 

discussion above shows that in the new coordinates given by yj’s, as a 

result of a rotation of xj’s, this set becomes {y : λ1  
 + λ2  

  + · · · + λn  
 = 

1, }, an ellipsoid in principal axes. In the infinite dimensional setting one 

may still call the eigenvectors zj the principal axes of T , and the theorem 

guarantees such reduction to principal axes by a rotation is always 

possible. 

 

CHECK YOUR PROGRESS 

1. Explain : A Hilbert space has a countable complete orthonormal set if 

and only if it is separable in its induced metric 

 

 

 

2. Explain Adjoint operator 

 

 

 

3. What do you understand by compact operator 
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9.5 LET’S SUM UP 
 

We have studied the spectrum theory and its application. We understood 

the cocept of ajoint and compact operator and their relation. 

9.6 KEYWORDS 
 

Subsequence –  a subsequence is a sequence that can be derived from 

another sequence by deleting some or no elements without changing the 

order of the remaining elements. 

Closed subspace - A closed subspace is a subspace that when treated as 

a subset of the original space is a closed set in the original topology. 

Two sided ideal -  The term two-sided ideal is used in noncommutative 

rings to denote a subset that is both a right ideal and a left ideal. In 

commutative rings, where right and left are equivalent, a two-sided ideal 

is simply called "the" ideal 

 

9.7 QUESTIONS FOR REVIEW 
 

1. Let T ∈ B(X). Show that Re 〈    〉= 0 implies T + T*= 0 

2. Under the identification of the dual space of a Hilbert space with itself 

by the Fr´echet-Riesz theorem, show that the transpose of T ∈ B(Y ', X') 

becomes the adjoint T ∗ ∈ B(Y, X). Note: The 

identification is sesquilinear. 

3. Let T ∈ L(X) be a compact operator. Show that 

(a) T is bounded, 

(b) for any S ∈ B(X), TS and ST are compact operators; and 

(c) all compact operators form a closed set in B(X). Hint: Use a diagonal 

sequence. 
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9.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide proof – 9.2.1  

2. Provide explanation–9.3 

3. Provide explanation–9.4 
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UNIT 10:  WEAK COMPACTNESS 
 

STRUCTURE 

10.0 Objective 

10.1 Introduction 

10.2 Weak Sequential Compactness 

10.3 Topologies Induced By Functionals  

10.4 Weak And Weak* Topologies  

10.5 Let’s Sum up 

10.6 Keywords 

10.7 Questions For Review 

10.8 Suggested Readings 

10.9 Answers To Check Your Progress 

 

10.0 OBJECTIVE 
 

Understand the concept of Weak Sequential Compactness  

Enumerate Topologies Induced by Functionals 

Comprehend Weak and Weak* Topologies 

10.1 INTRODUCTION 
 

An essential difference between finite and infinite dimensional normed 

spaces is that the closed unit ball is compact in the former but not 

compact in the latter. To compensate the loss of compactness in an 

infinite dimensional space, one may impose additional conditions to 

sustain compactness. A complete answer is known for the space of 

continuous functions under the sup-norm, see the discussion on 

AscoliArzela theorem. Yet there is a more radical way of thinking, 

namely, we search for a weaker concept of compactness which an 

infinite dimensional closed unit ball satisfies. This leads us to the study 

of both weakly sequential and weak compactness. A weak topology 
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contains less open sets than the topology induced by the norm (the strong 

topology), so the chance of obtaining compact sets is higher. 

In the first section of this chapter, we discuss weak sequential 

convergence and prove the widely used result that the closed unit ball is 

weakly sequentially compact in a reflexive space. To study the problem 

in a general normed space, new concepts of weak and weak* topologies 

are introduced.  

In Section 2 we discuss some basic properties of the topologies induced 

by a family of linear functionals on a vector space. By specifying these 

families to X0 on X and X on X0 (through the canonical identification), 

we obtain the weak and weak* topologies on the spaces X and X0 

respectively. In Section 3 we prove the central results in this chapter, 

namely, Alaoglu theorem and a theorem characterizing reflexive spaces 

by weak compactness. We conclude this chapter by a discussion on 

extreme points in a convex set and a proof of Krein-Milman theorem, a 

cornerstone in functional analysis. For simplicity we will take the scalar 

field to be real. The reader should have no difficulty in extending the 

results to the complex field. 

 

10.2 WEAK SEQUENTIAL 

COMPACTNESS 
 

Let (X, ||· ||) be a normed space and X'its dual. A sequence {xn} in X is 

called weakly convergent to some x ∈ X if for every Λ ∈ X',  

   Λxn → Λx,   as n → ∞. 

Denote it by xn ⇀ x. 

We will call the convergence of a sequence ―strong convergence‖ in 

contrast to weak convergence. The following proposition clarifies the 

relationship between these two notions of convergence. 

 

Proposition 10.2.1. Let (X, || · ||) be a normed space and {x
n
} ⊂ X. 

 

(a) xn * x and xn * y implies x = y. 

(b) xn → x implies that xn * x. 
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(c) If xn * x, then ||xn|| ≤ C, ∀n for some constant C. 

(d) If xn * x, then ||x|| ≤ limn→∞ || xn ||. 

(e) If xn * x, then x belongs to the closure of the convex hull of { xn }. 

 

Note that (d) can be deduced from (e) in this proposition. However, a 

short, direct proof is preferred. 

Proof. (a) From xn * x and xn * y we deduce that Λ(x − y) = 0 for all Λ ∈ 

X' and x = y. 

(b) { xn } converges to x strongly means that ||xn – x||→ 0 as n → ∞. For 

Λ ∈ X', 

   |Λxn − Λx| ≤ ||Λ||||xn – x|| → 0, 

 

so {xn} converges to x weakly. 

(c) Since for each Λ ∈ X', Λxn → Λx, so Λxn is bounded. The conclusion 

follows immediately from the uniform boundedness principle. You 

should note that X' is a Banach space. 

 

(d) Pick Λ1 ∈ X' satisfying Λ1x = ||x|| and ||Λ1|| = 1, that is, it is a dual 

point of x. For any 

convergent subsequence of {||xn||}, {||   
 ||}, we have 

 

 

 

 

 

whence (d) follows. 

(e) Let K be the closure of the convex hull of {xn}. If, on the contrary, x 

does not belong to K, by 

the separation form of the Hahn-Banach theorem, there exist some Λ ∈ 

X' and α such that 

Λx < α < Λy, ∀y ∈ K. 

 

In particular, taking y = xn and letting n → ∞, we have 
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Contradiction holds. 

Proposition 10.1.1(b) shows that strong convergence implies weak 

convergence. When X is of finite dimension, every element is of the form 

x = ∑  αjzj after a basis {z1, · · · , zn} has been chosen. Consider the n 

many linear functionals given by Λj(x) = αj, j = 1, · · · , n. When xk * x 

where xk = ∑  
 zj and x = ∑  αjzj , we have Λj(xk) = αj k → Λj(x) = αj. It 

shows that xk → x, that is, weak convergence also implies strong 

convergence. So they are equivalent when the space is finite 

dimensional. However, for infinite dimensional spaces this is rare. There 

are plenty weakly sequentially convergent sequences which are not 

strongly convergent. Let us look at two examples. 

Example Consider  p
-space, 1 < p < ∞ and {ej} ⊂  p

 where ej’s are the 

―canonical vectors‖. It is clear that {ej} does not have any convergent 

subsequence as kei − ejkp = 21/p for distinct i and j. On the other hand, 

we claim that ej * 0. To see this, recall that any bounded linear functional 

Λ on `p can be identified with 

 

 

 

 

where y = (y1, y2, · · · , yn, · · · ), ∑     
  < ∞, by `p-`q duality. We have 

|Λej| = |yj|. As ∑     
 < ∞, |yj| → 0, that is, ej* 0 as j → ∞. 

 

Example Consider {fn}, fn(x) = sin nx, in L
2
(0, 1). By a direct calculation, 

we have 

 

 

 

which means that this sequence does not converge in L
2
(0, 1). 

Nevertheless, let us show that it is weakly convergent to zero. First, we 

claim that 

 

 

 

for every monomial xm. Indeed, this follows easily from the formulas 
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and 

 

 

 

 

 

 

 

 

Cosequently, for every polynomial p. As all polynomials form a dense 

set in L
2
(0, 1), a density argument shows that the above formula also 

holds when p is replaced by an L
2
-function. By self-duality, we conclude 

that {sin nx} converges to 0 weakly in L
2
(0, 1). 

Later, we will see that in an infinite dimensional reflexive (Banach) 

space, divergent sequences which are weakly convergent always exist. 

However, in some exceptional cases things may behave differently. A 

result of Schur asserts that any weakly convergent sequence in  1
 is also 

strongly convergent, see exercise. 

 

The most important and useful result concerning weak sequential 

compactness is the following theorem. 

 

Theorem 10.2.2. Every closed ball in a reflexive space is weakly 

sequentially compact. 

 

A set E in (X, ||· ||) is weakly sequentially compact if every sequence in 

it contains a weakly convergent subsequence in E. 

Proof. Without loss of generality we assume the ball is given by {x ∈ X : 

||x||≤ 1}. Let {xn} be a sequence contained in this ball. We would like to 

extract a weakly convergent subsequence from it. 

Let Y = 〈  〉be the closed subspace of X spanned by {xn}. It is clear that Y 

is separable. As any closed subspace of a reflexive space is reflexive, Y is 

also reflexive. Recalling that a normed space is separable when its dual is 

separable, we conclude from the relation (Y')' = Y and the separability of 

Y that Y' is also separable. Let S be a countable dense set in Y'. By 
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extracting a diagonal sequence, we find a subsequence of {xn}, {yn}, such 

that 

 

 

 

For any Λ ∈ Y', we can pick a sequence {Λj} from S such that ||Λ – Λj|| 

→ 0 as j → ∞. We claim that {Λyn} is a Cauchy sequence in R. For, 

taking any ε > 0, we fix j0 such that ||Λ − Λj0|| < ε. Then 

 

By (1), there exists n0 such that |Λj0yn − Λj0ym| < ε, for all n, m ≥ n0, so 

 

   |Λyn − Λym| < 3ε, 

 

that is, {Λyn} is a Cauchy sequence. Define a real-valued function  on Y' 

by 

 

 

It is readily checked that `(Λ) is linear. Moreover, we have 

 

 

 

 

 

which means that  ∈ Y". 

By the reflexivity of Y , there exists some y ∈ Y such that Λy =   (Λ). We 

conclude that Λyn → Λy for every Λ ∈ Y'. Since each Λ ∈ X' is a 

bounded functional on Y by restriction, yn * y. By Proposition 10.1.1 (c), 

||y|| ≤ 1. The proof is completed. 

 

Corollary 10.2.3. Let C be a non-empty convex set in a reflexive space 

X. It is weakly sequentially compact if and only if it is closed and 

bounded. 
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Proof. As C is bounded, it is contained in some closed ball B. By 

Theorem 10.1.2, any sequence {xn} in C has a subsequence {xni} weakly 

converging to some x ∈ B. As C is closed and convex, x ∈ C according 

to Proposition 7.1(d), so C is weakly sequentially compact. 

 

Conversely, let {xn} be a sequence in C which converges to some x in X. 

We would like to show that x belongs to C, so that C is closed. In fact, as 

C is weakly sequentially compact, there exists a subsequence {xnj } of 

{xn} which converges weakly to some y in C. By the uniqueness of limit, 

we conclude that x is equal to y, so it belongs to C. On the other hand, if 

there is some {xn} ∈ C, ||xn|| → ∞, by weak sequential compactness there 

exists a weakly convergent subsequence xnj . However, by Proposition 

10.1.1 (c), this subsequence is bounded, contradiction holds. Hence C 

must be bounded. 

 

Recall that in a finite dimensional normed space a set is sequentially 

compact if and only if it is closed and bounded. We have generalized it 

to convex sets in a reflexive space simply by replacing sequential 

compactness by weak sequential compactness. 

 

Parallel to weak sequential convergence, we call a sequence {Λk} in the 

dual space X’ weakly* sequentially convergent to some Λ if Λkx → Λx 

for every x ∈ X. Weak* sequential compactness for a set in X' can be 

defined correspondingly. We refer to the exercises for some properties of 

this notion. 

We conclude this section with an application of weak sequential 

compactness. More applications can be found in exercises. We examine 

again the problem of best approximation. In Theorem 5.8 we showed that 

this problem always admits a unique solution in a Hilbert space. Now, 

we have 

Theorem 10.2.4. Let X be a reflexive space and C a nonempty closed, 

convex subset. Then for any x ∈ X, there exists z ∈ C such that 
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In other words, the best approximation problem always has a solution in 

a reflexive space. 

 

Proof. Let {yn} be a minimizing sequence of the problem, that is, 

 

 

 

From  

 

 

we see that {yn} is a bounded sequence in X. By Theorem 7.2, it contains 

a weakly convergent subsequence {   
},    

  * z for some z. 

Proposition10.1.1.(d) asserts that z ∈ C. Moreover, by the same 

proposition we have so z is a point in C realizing the distance. 

 

 

 

10.3 TOPOLOGIES INDUCED BY 

FUNCTIONALS 
 

In this section we will first give a quick review on some basic 

topological concepts, especially those concerning the topology induced 

by a family of functions on a set. Next, we examine more closely about 

the case where the set is a vector space and the functions are linear 

functionals on this vector space. 

 

Recall that (X, η) where X is a set and η is a collection of subsets of X is 

called a topological space if η satisfies 

 

(a) The empty set   and X belong to η, 

(b) unions of elements in η belongs to η, and 

(c) intersections of finitely many elements in η belongs to η. 

Any element in η is called an open set. A set F is closed if its 

complement is open. Immediately we 

deduce from (a), (b), and (c) the following facts: 
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(d) X and   are closed sets, 

(e) intersections of closed sets are closed sets, and 

(f) unions of finitely many closed sets are closed sets. 

For any subset E of X, its closure is defined to be 

 

Note that X is closed and it contains E. By (e) E is a closed set. Clearly, it 

is the smallest closed set containing E. A subset K is compact if every 

open covering of K has a finite subcover. 

With open sets at hand, we can talk about convergence and continuity. 

For instance, a sequence {xn} in X is convergent to some x in X if for each 

open set G containing x, there exists some n0 such that xn ∈ G for all n ≥ 

n0. A mapping f : (X, η) ↦ (Y, ζ) between two topological spaces is 

continuous at x if f 
−1

(G) is open for any open set G containing f(x). It is 

continuous in a subset E if it is continuous at every x in E. 

 

In a metric space (X, d), G is an open set if for every x ∈ G, there exists 

some metric ball Bρ(x) ⊂ G. One can verify that the collection of all 

these open sets makes X into a topological space. This is the topology 

induced by the metric d. The notions of open set, closed set, the closure 

of a set, convergence of a sequence and continuity of functions all 

coincide with those previously defined for a metric space. 

However, caution must be made as many facts valid in a metric space are 

no longer true in a general topological space. For instance, a set in a 

metric space is closed if and only if the limit of any convergent sequence 

belongs to the set. In a general topological space, the ―only if‖ part holds 

but the ―if‖ part does not. Further, a set in a metric space is compact if 

and only if it is sequentially compact. This is not always true for a 

general topological space. There are compact topological spaces 

admitting sequences which do not have convergent sequences. On the 

other hand, there are non-compact topological spaces in which all 

sequences have convergent sequences. When it comes to continuity, a 

function f is continuous at x in a metric space if and only if for any 

sequence { xn } converging to x, f(xn) converges to f(x). In a topological 

space, convergence of f(xn) to f(x) for any { xn } → x does not ensure 
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continuity, although  it holds when f is continuous at x. In a word, 

topological properties cannot be fully described in terms of sequences in 

a general topological space. 

Now, we turn to the topology induced by functions on a set. 

 

Let X be a non-empty set. For a non-empty collection of functions F 

from X to R, we introduce a topology η(X, F) on X by the following way. 

First, Let  1 be the collection of subsets of X of the form f 
−1

(a, b) where 

a, b ∈ R and f in F. (Define   = f 
−1

( ).) Next, let  2 be the collection of 

all finite intersections of unions of elements from U1. Finally, let η = η(X, 

F) contain all unions of elements from  2. One can verify that η forms a 

topology on X. By this construction, each f in F is a continuous function 

in (X, η). In fact, for any (X, η1) in which every function in F is 

continuous, η1 must contain η. 

In this sense η is the weakest topology to make each element of   

continuous. We call it the induced topology by  . Intuitively speaking, 

the induced topology is finer (containing more open sets) if there are 

more functions in   and coarser (containing less open sets) if there are 

less functions in  . A topological space (X, η) is a Hausdorff space if for 

any two distinct points in X, there exist two disjoint open sets containing 

these points respectively. In analysis Hausdorff space is preferred for 

many of its nice properties. For instance, a compact set is closed in a 

Hausdorff space. A metric space is always Hausdorff, as any distinct x1 

and x2 are contained in the disjoint open sets {z ∈ X : d(z, x1) < 1/2d(x1, 

x2)} and {z ∈ X : d(z, x2) < 1/2d(x1, x2)} respectively.  

To make an induced topology a Hausdorff one, F cannot contain too few 

functions. It is called separating if for any two distinct points x and y in 

X, there exists a function f ∈ F such that f(x) ≠ f(y). 

 

Proposition 10.3.1. The space (X, η(X, F)) is a Hausdorff space if F is 

separating. 

 

Proof. For distinct x1 and x2, let f ∈ F satisfy f(x1) < α < f(x2) for some 

α, say. Then G1 ≡ {x : f(x) < α} and G2 ≡ {x : f(x) > α} are two disjoint 

open sets containing x1 and x2 respectively. 



Notes 

52 

So far, X has been taken to be a non-empty set without any extra 

structure and F is a set of real functions on X. Now, let us assume that X 

is a vector space and F a subset of L(X, R), that is, it is composed of 

linear functionals. We would like to know more about the induced 

topology in this setting. 

 

Proposition 10.3.2. Consider the induced topology η(X, F) where X is a 

vector space and F ⊂ L(X, R). Let G be a non-empty set in X. We have 

(a) G is open if and only if for each x0 ∈ G, there exists U of the form 

U = {x : |Λjx| < α, j = 1, · · · , N}       (2) 

for some Λj ∈ F and α > 0 such that U + x0 ⊂ G. 

(b) G is open if and only if G + x0 is open for every x0 ∈ X. 

(c) G is open if and only if λG is open for every λ ≠ 0. 

From (b) and (c) we see that translations and multiplications by non-zero 

scalars are homeomorphisms with respect to η(X, F). 

 

Proof. (a) Let x0 ∈ G. By the definition of η(X, F ) there exists a set of 

the form V = {x : Λjx ∈ (αj, βj), j = 1, · · · , N} containing x0 in G. It 

follows that x − x0 ∈ Λ−1((αj − Λjx0, βj − Λjx0)) for x ∈ V . So, the set 

in (2) by taking α = minj{|αj − Λjx0|, |βj − Λjx0|} is an open set 

containing x0 in G. The converse is trivial from definition. 

(b) For x ∈ G, there exists some U as in (7.2) such that U + x ⊂ G. But 

then U + (x + x0) ⊂ G + x0. 

(c) Argue as in (b). 

It is convenient to call a set of the form (7.2) a ―η-ball centered at 0‖ or 

simply a ―η-ball‖. Unlike a metric ball, a η-ball is not only specified by its 

―radius‖ α (now a vector), but also the functionals Λj’s. Under the 

induced topology η(X, F), every element in F is continuous. In a normed 

space we know that a linear functional is continuous if and only if it is 

bounded. Here we have a similar result. 

 

Proposition 10.3.3. Let Λ be a linear functional on (X, η(X, F)). 

(a) Λ is continuous if and only if it is continuous at one point. 

(b) Λ is continuous if and only if it is bounded on a η-ball. 



Notes 

53 

Proof. (a) Assume that Λ is continuous at x0. For any (α, β) containing 

Λx0, Λ−1(α, β) has an open subset U containing x0. Let (α', β') be any 

open interval containing Λx. Then (α, β) = (α', β0)+Λx0−Λx is an open 

interval containing Λx0, using Λ−1(α, β) = Λ−1(α0, β0) + x0 − x and 

Proposition 10.2.2 (b), we see that U − x0 + x is an open subset of 

Λ−1(α0, β0) containing x, so Λ is continuous at x. 

 

(b) Λ
−1

(−1, 1) is open for a continuous Λ. As 0 ∈ Λ
−1

(−1, 1), there is an 

open set of U the form 

 

(2) Contained in Λ−1 by Proposition 7.6 (a). So |Λ(U)| ≤ 1, and Λ is 

bounded on U. Conversely, if |Λ(U)| ≤ M for some constant M where U 

is a η-ball. By (a) it suffices to show that Λ is continuous at 0, that is, 

Λ
−1

(a, b) is open for every a, b, a < 0 < b. Pick any x0 ∈ Λ−1(a, b), 

there is an ε > 0 such that (Λx0 − ε, Λx0 + ε) ⊂ (a, b). Letting V = 2M ε 

U, it is easy to see that V + x0 is an open set containing x0 and V + x0 ∈ 

Λ−1(a, b), so Λ−1(a, b) is open. 

 

Under the topology η(X, F), every element in F is continuous by 

definition. Are there more? Consider the very special case where F 

consists of a single functional Λ. Clearly, any constant multiple of Λ is 

continuous. Furthermore, one can show that the sum of two linear 

functionals from F is continuous. The following proposition asserts that 

these are the only cases. 

 

Proposition 10.3.4. Consider (X, η(X, F)) where X is vector space and F 

⊂ L(X, R). The collection of all continuous linear functionals is given by 

F if and only if F is a subspace of L(X, R). 

 

Proof. We will only prove the ―if ‖ part and leave the ―only if ‖ part as 

exercise. 

Let Λ be continuous in η(X, F). There exists an open set 
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We claim that Λ vanishes on  ⋂       
   . For, if z satisfies Λjz = 0, j = 

1, · · · , N, then Λj(λz) = 0 for all λ, so λz ∈ U. From 

  |λ||Λz| = |Λ(λz)| ≤ 1 

that Λz = 0 after letting |λk go to infinity. By the lemma below, Λ is a 

linear combination of Λj, so Λ ∈ F by assumption. 

 

Lemma 10.3.5. Let Λ, Λ1, · · · , Λn be in L(X, R). If Λx = 0 whenever x ∈ 

⋂       
   , then Λ is a linear combination of Λ1, · · · , and Λn. 

 

Proof. Let Z = {(Λx, Λ1x, · · · , Λnx) : x ∈ X}. Clearly Z is a subspace of 

R
n+1 

and it is proper because the point (1, 0, · · · , 0) does not belong to it 

by assumption. We can find a hyperplane az + a1z1 + · · · +anzn = 0 which 

contains Z but not (1, 0, · · · , 0). In other words, 

 

   aΛx + a1Λ1x + · · · + anΛnx = 0, 

for all x ∈ X and a1 + a10 +· · · + an0 ≠ 0. The second expression shows 

that a is non-zero, so the desired conclusion follows from the first 

expression. 

We have discussed the separation theorem as a consequence of Hahn-

Banach theorem. Now we establish a separation theorem in induced 

topology. It will be our main tool in later evelopment. We start with a 

lemma. 

 

Lemma 10.2.6. Let C be an open, convex set in (X, η(X, F)) containing 0 

and p its gauge. Then 

C = {x : p(x) < 1}. 

Recall that the gauge of a convex set is given by 

 

 

 

and p(x) = ∞ if no such µ exists. It is a positive homogeneous subadditive 

function. When C is open and contains 0, it contains some η-ball. 

Therefore, for every x ∈ X, we can find some small ε > 0 so that εx 

belongs to this η-ball and hence C, so p(x) is always finite. 
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Proof. We claim that {p < 1} ⊂ C for any convex set C (not necessarily 

open) containing 0. Indeed, if p(x) < 1 for some x, then there exists some 

µ ∈ (0, 1) such that µ−1x ∈ C. By convexity x = (1 − µ)0 + µ(µ−1x) ∈ 

C. 

To show the inclusion from the other direction, we observe for each x in 

the open C, we can find a η-ball such that U + x ⊂ C. From the definition 

of U, there exists some small ε > 0 such that εx ∈ U. 

Thus, x + εx ∈ C and it implies that p(x) ≤ 1/(1 + ε) < 1, the desired 

conclusion follows. 

 

Theorem 10.3.7. Let A and B be two disjoint, non-empty convex sets in 

(X, η(X, F)) where X is a vector space and F ⊂ L(X, R). 

 

(a) When A is open, there exists a continuous linear functional Λ such 

that 

     Λx < Λy,  for all x ∈ A, y ∈ B. 

(b) When A is compact and B is closed, there exist a continuous linear 

functional Λ, α and β such 

that 

     Λx < α < β < Λy,  for all x ∈ A, y ∈ B. 

Proof. (a) Consider the convex set C = A − B + x0 where x0 is a point in 

B − A. It is open because C = Sx∈B A − x + x0 and A is open. Moreover, 

it contains the origin as x0 is located outside C. Let p be the gauge of C. 

Define Λ0 on the one-dimensional subspace 〈  〉by Λ0(αx0) = α. Then Λ0 

≤ p on this subspace. This is trivial when α ≤ 0. When α > 0, by Lemma 

10.2.5 p(αx0) = αp(x0) ≥ α as x0 lies outside C. Appealing to the general 

Hahn-Banach theorem, we find an extension of Λ0, Λ ∈ L(X, R), 

satisfying Λ ≤ p in X. For, x ∈ A and y ∈ B,  

     

     Λ(x − y + x0) ≤ p(x − y + x0)  

 

Holds. It follows that Λx < Λy after using Λx0 = 1 and Lemma 10.2.5. 

We still have to show that Λ is continuous. We pick a η-ball U in C. 

Noting that x ∈ U implies 
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−x ∈ U, we have |Λx| ≤ p(x) < 1 in U, so Λ is continuous by Proposition 

10.2.3(b). 

 

(b) We use a compactness argument to show that there is an open set V 

such that A + V is disjoint from B. For each x ∈ A, as X \ B is open, there 

exists Vx = {y : |Λjy| ≤ 2γx, j = 1, · · · , N}, γx > 0, so that Ux ≡ Vx + x is 

disjoint from B. The collection of all open sets 1/ 2Vx + x forms an open 

cover of A. As A is compact, there is a finite subcover given by, say, 

finitely many 1/2Vxk + xk, k = 1, · · · , m. Taking 

 

  V = {y : |Λjy| ≤ γ}, some γ > 0, 

where the Λ j’s are taken from all those linear functionals appearing in 

the definition of Vxk, one verifies that A + V is an open, convex set 

disjoint from B. 

 

By (a) there exists a continuous linear functional Λ satisfying Λx < Λy 

for all x ∈ A + V and y ∈ B. It is elementary to show that a non-zero 

linear functional is an open map, so Λ(A + V ) is an open set in R. On the 

other hand, ΛA is compact as the image of a compact set by a continuous 

functional. So (b) holds for some α and β. 

CHECK YOUR PROGRESS 

1. Explain: Let C be a non-empty convex set in a reflexive space X. It is 

weakly sequentially compact if and only if it is closed and bounded. 

 

 

 

2. Explain Topologies induced by functionals 

 

 

 

10.4 WEAK AND WEAK* TOPOLOGIES 
 

Let (X, || · ||) be a normed space. The topology η(X, X') is called the weak 

topology of X. This is the weakest topology to make every bounded 

linear functional continuous. As ensured by the HahnBanach theorem, 
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there are sufficiently many elements in X' to separate points, the weak 

topology is Hausdorff. However, it contains much less open sets than the 

strong topology does when the space is infinite dimensional. In sharp 

contrast to norm topology, we have the following results. 

 

Proposition 10.4.1. Let X be an infinite dimensional normed space. 

Every weakly open set contains an infinite dimensional subspace of X. 

A set is weakly open means that it is open in η(X, X'). As a consequence, 

every non-empty weakly open set is unbounded in norm. 

 

Proof. As every weakly open set contains a weak ball (that’s, η(X, X0)-

ball) U, it suffices to prove the result for U. Consider the linear map from 

X to RN given by Φ(x) = (Λ1x, · · · , ΛNx) where Λj’s are the bounded 

linear functionals defining U. The kernel of Φ is of infinite dimension. 

For any x ∈ N(Φ), Λjx = 0 for all j, so N(Φ) ⊂ U. 

 

A topological space is called metrizable if its topology is induced by 

some metric. 

 

Proposition 10.4.2 The weak topology is not metrizable when X is an 

infinite dimensional normed space. 

Proof. Assume the weak topology on X comes from a metric d. As the 

topology induced from a metric admits a countable local base given by {x 

: d(x, x0) < 1/n}, n ≥ 1, at every point x0, in particular, there is a 

countable base at 0 consisting of weak balls Un = {x : |  
  x| < αn}, 

where j = 1, 2, · · · , N(n), n ≥ 1. 

All these   
  ’s form a countable set in X0. As X0 is a Banach space and 

every Hamel basis of a Banach space is uncountable (Proposition 4.14), 

we can find some T ∈ X0 which is independent of all these   
  ’s. 

Consider the open set G given by {x : |Tx| < 1}. It must contain some 

Un0, so T vanishes on ⋂     
    . However, by Lemma 10.2.4, T is a 

linear combination of   
  ’s, contradiction holds. Hence the weak 

topology is not metrizable. 

Although the weak and norm topologies are very different as seen from 

the above propositions, they have something in common. 
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Proposition 10.4.3. A convex set in a normed space X is weakly closed 

if and only if it is closed. 

Proof. Since the weak topology is weaker than the norm topology, any 

weakly open set is open in the norm topology, so any weakly closed set 

must be closed. Conversely, let C be closed and convex. For x0 ∈ / C, by 

Theorem 10.2.6 there exist some Λ ∈ X' and scalar α such that 

 

Λx0 < α < Λy, ∀y ∈ C. 

 

Thus the open set V = {x : Λx < α} is disjoint from C, so X \ C is weakly 

open. 

Next, consider the dual space X0 of a normed space X. We know that it is 

a Banach space under the operator norm. Furthermore, under the 

canonical identification X can be viewed as a subspace of X" 

 

The weak* topology on X' is given by η(X0, X). It is clearly Hausdorff. A 

local base at 0 consists of ―weak* balls‖ 

 

U = {Λ : |Λxj| < α, j = 1, · · · , N}, 

 

for some N and α > 0. 

 

The most important result in weak* topology is the following theorem. 

 

Theorem 10.4.4  (Alaoglu). The closed ball in X' is weakly* compact. 

 

Proof. Let P be the product space ∏                  ∈   endowed with the 

product topology. By Tychonoff theorem P is compact. We set up a 

mapping Φ from B, the closed unit ball in X', to P by setting Φ(Λ) = p if 

and only if Λx = px, where px is the projection of P to [−||x||, ||x||]. By 

the definition of the product topology, its local base at p is given by sets 

of the form 

     {q : |qxj − pxj | < α, j = 1, · · · , N}, 

 

for some x j’s and α > 0. By comparing the weak* balls in X' with this 
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local base, we know that Φ is a homeomorphism from (B, η(X0, X)) to P . 

To establish the theorem it suffices to show that Φ(B) is closed in P , 

since a closed subset of a compact Hausdorff space is compact. Let p be 

in the closure of Φ(B). We define Λx = px. To show p ∈ Φ(B), we must 

prove that Λ is linear and ||Λ|| ≤ 1. 

First, we claim Λ(x + y) = Λx + Λy, that is, px+y = px + py. For, consider 

the open set V containing p given by {q : |qx −px|, |qy −py|, |qx+y −px+y| < 

α}. As p belongs to the closure of Φ(B), for each α > 0, there exists some 

Λ1 in B in V , that is, |Λ1x − px|, |Λ1y − py|, |Λ1(x + y) − px+y| < α. It 

follows that 

 

Which implies px+y = px + py. Similarly, one can show that pαx = αpx, 

so Λ is linear. Furthermore, from 

 

|Λx| = |px| ≤ ||x|| we have ||Λ|| ≤ 1, so Λ ∈ B. The proof of this theorem 

is completed. 

CHECK YOUR PROGRESS 

3. What is weak Topology? 

 

 

 

4. Define metrizable topology. 

 

 

 

10.5 LET’S SUM UP 
 

This is the weakest topology to make every bounded linear functional 

continuous. As ensured by the HahnBanach theorem, there are 
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sufficiently many elements in X' to separate points, the weak topology is 

Hausdorff. 

In analysis Hausdorff space is preferred for many of its nice properties. 

For instance, a compact set is closed in a Hausdorff space. A metric 

space is always Hausdorff 

10.6 KEYWORDS 
 

Canonical vectors - the choice of basis of a vector space is arbitrary, 

and there is no canonical basis OR ―without any arbitrary choices‖. 

Topological space - In topology and related branches of mathematics, 

a topological space may be defined as a set of points, along with a set of 

neighbourhoods for each point, satisfying a set of axioms relating points 

and neighbourhoods. 

Metric space - In mathematics, a metric space is a set together with 

a metric on the set. The metric is a function that defines a concept of 

distance between any two members of the set, which are usually called 

points. 

 

10.7 QUESTIONS FOR REVIEW 
 

1. Show that a weakly convergent sequence in `1 also converges 

strongly. This result is called Schur’s theorem. 

2. Show that a weakly convergent sequence in C[a, b] must converge 

pointwisely. Given an example to show that the converse may not hold. 

3. Show that in a Hilbert space H, { xn } → x if and only if (a) xn * x and 

(b) ||xn|| → ||x||. 
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10.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide proof – 10.2.3  

2. Provide explanation – 10.3  

3. Provide explanation – 10.4 & statement and proof of proposition – 

10.4.1 

4. Provide definition – 10.4.1 
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UNIT 11: NONLINEAR OPERATORS I 
 

STRUCTURE 

11.0 Objective 

11.1 Introduction 

11.2 Fixed-Point Theorems 

11.3 Let’s Sum up 

11.4 Keywords 

11.5 Questions For Review 

11.6 Suggested Readings 

11.7 Answers To Check Your Progress 

 

1.1.0 OBJECTIVE 
 

Understand the concept of Fixed-Point Theorems  

Comprehend different types of Fixed-Point Theorems  and their  

11.1 INTRODUCTION 
 

There are three sections in this chapter. In the first section several fixed 

point theorems are discussed, starting from the contraction principle, 

Brouwer fixed-point theorem on finite dimensional space and ending on 

Schauder fixed point theorem. Their applications are illustrated by 

examples. In the next section we develop calculus on Banach space.  

In this section we will discuss three widely known fixed-point theorems, 

starting with the fixed-point theorem established by Banach in 1920. 

Since its discovery, this theorem remains as one of the most frequently 

used results in analysis. 

11.2 FIXED-POINT THEOREMS 
 

For a map from a set to itself, a fixed point of this map is an element in 

this set which is not movedby it. Many theoretical and practical problems 
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can be formulated as problems of finding fixed points of certain maps. 

The general question of solving equation, symbolically written as f(x) = 

0, is equivalent to solving g(x) = x, where g(x) ≡ f(x) + x. Consequently 

any root of f is a fixed point of g.  

 

The setting of Banach fixed-point theorem, or contraction mapping 

principle, is formulated on a 

complete metric space. Let (X, d) be a metric space. A map T : (X, d) → 

(X, d) is called a contraction if there exists some γ ∈ (0, 1) such that 

 

 

 

It is clear that any contraction is necessarily continuous. 

 

Theorem 11.2.1. Every contraction on a complete metric space has a 

unique fixed point. 

 

Proof. Let (X, d) be a complete metric space. Pick any x0 from X and 

define a sequence {xn} biteration: xn = T n(x0) , n > 1. We claim that {xn} 

is a Cauchy sequence. For, we have 

 

 

 

 

 

 

for any n, m, n > m. On the other hand, for l ≥ 1, 
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Taking l = n − m, we have 

 

 

hence {xn} is a Cauchy sequence. By completeness of the space exists. 

 

 

 

By the continuity of T 

 

 

 

in other words, z is a fixed point of T .If w is another fixed point of T , 

then 

 

 

 

As γ ∈ (0, 1), it forces d(w, z) = 0, i.e., w = z, so the fixed point is unique. 

 

It is worthwhile to note that the above proof provides a constructive way 

to find the fixed point. 

Starting from any initial point, the fixed point can be found as the limit 

of an iteration scheme. The contraction mapping principle has wide 

applications. You should have learned how it is used to establish the 

local solvability of the initial value problem of ordinary differential 

equations. Another standard application is the proof of the implicit 

function theorem. We shall, in the next section, shows that it can be used 

to prove the same theorem in the infinite dimensional setting. 

 

Banach fixed-point theorem asserts the existence of fixed points for 

special maps (contractions) in a general space (a complete metric space). 

There are fixed-points theorems which hold for general maps in a special 

space. The Brouwer fixed-point theorem is the most famous one among 

them. It is concerned with continuous functions from the closed unit ball 

of the n-dimensional Euclidean space to itself. The complete statement 
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was first proved by Brouwer in 1912 using homotopy, a newly invented 

topological concept. Over the years there are many different proofs and 

generalizations. 

Let B be a closed ball in ℝn
 , n > 1. 

 

Theorem 11.2.2. Every continuous map from B to itself has a fixed 

point. 

This theorem is not valid when the closed ball is replaced by the open 

one. For instance, the map T (x) = (1 + x)/2 which maps (0, 1) to itself is 

free of fixed points. 

 

In the following we will take the ball to be the closed unit ball centered 

at the origin. We begin with a computational lemma. 

 

Lemma 11.2.3. Let f be twice continuously differentiable from B to B. 

Denote its Jacobian matrix by  Jf(x) = (∂f 
i
/∂xj), i, j = 1, · · · , n. Let cij be 

its (i, j)-th cofactor. Then for each i, 

 

 

 

Proof. Without loss of generality take i = n. Let gj be the j−th (n − 1)-

column vector 

 

 

 

 

 

 

We have, by the definition of the cofactor matrix, 

 

 

where ―v‖ means the j-th column gj is removed. Note that g1, · · · , ˇgj, · · 

· , gn is an (n − 1) × (n − 1)- matrix. By the rule of differentiation, we 

have 
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Using the elementary properties of the determinant, we have 

 

 

Set ζkj equal to 1 if k < j, to 0 if k = j and to −1 if k > j. Then ζjk = −ζkj 

and 

 

 

So after using ∂g
k
/∂xj = ∂g

j
/∂xk in the last line, we are done. 

 

Proof of Theorem 11.2.2. Let us first prove the theorem assuming that F 

: B → B is twice continuously differentiable. Assume on the contrary F 

that does not have a fixed point, that’s, F (x) − x ≠ 0, ∀x ∈ B. 

For each x, consider the equation for λ, 
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where || · || is the Euclidean norm. This is a quadratic equation; indeed, 

by expanding it we have 

 

 

 

where 〈   〉stands for the Euclidean inner product. There are two real roots 

given by 

 

It is clear that the larger root a(x), regarded as a function of x, is given by 

 

 

 

 

 

It is readily checked that a is continuously differentiable in B and 

vanishes on ∂B, the boundary of B. (You should note that x, F (x) − x < 0 

by the characterization of equality sign in Cauchy-Schwarz inequality). 

 

Now, consider the one-parameter maps on B to itself given by 

 

F (x, λ) = x + λa(x)x − F (x). 

We have F (x, 0) = x and F (x, 1) ∈ ∂B. Consider the integral  

 

 

 

It is helpful to keep in mind that this integral gives the volume of the set 

F (B) in ℝn
 in view of the formula of change of variables. We claim that  

 

 

 

 

For,  
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Recall that the divergence theorem asserts that for any vector field v = 

(v1, · · · , vn) in the domain Ω, 

 

 

 

 

where ν = (ν1, · · · , νn) is the unit outer normal at ∂Ω, the boundary of Ω. 

Since ∂F/∂λ = a(x)(x−F (x)) vanishes on ∂B, (1) follows. 

 

From (1) we conclude that Iλ is a constant. In particular, I1 = I0. Since F 

(x, 0) = x, I0 = |B|, the volume of B. However, on the other hand, as F (·, 

1) maps B to ∂B, detJF (x, 1) ≡ 0 which implies that I1 = 0, contradiction 

holds. (To see why det JF (x, 1) ≡ 0, we may reason as follows: If det JF 

(x0, 1) ≠ 0 at some x0. By the continuity of det JF (x, 1) we may assume x0 

is located in the interior of B. Nonvanishing of the determinant implies 

that the matrix JF (x0, 1) is invertible. By the inverse function theorem, 

the image of F (·, 1) would contain an open set surrounding the point F 

(x0, 1), which would be in conflict with F (B, 1) ⊂ ∂B.) 

 

From this contradiction we conclude that every twice continuously 

differentiable map from B to itself has a fixed point. 

 

Now the general case. Let F = (F 1, · · · , F n) be any continuous map 

from B to itself. For each F j, we can find a sequence of polynomials 

{  
 
} which approximate it uniformly in B. Therefore, the map Fk = (  

 , · 

· · ,   
 ,) is smooth from B to ℝn

. It is not hard to see that we can find λk ∈ 
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(0, 1), λk → 1 such that, Gk = λkFk : B → B. Let zk by a fixed point of Gk. 

Then Gk(zk) = zk. By Bolzano-Weierstrass theorem we can extract from zk 

a convergent subsequence, still denoted by {zk} which converges to some 

z Then 

 

 

 

 

 

that’s, z is a fixed point for F . The proof of Brouwer fixed-point theorem 

is completed.  

Theorem 11.2.2 clearly is a topological result. It implies that every 

continuous map from a set homeomorphic to the closed unit ball to itself 

has a fixed point. In particular, this is true on compact convex sets in ℝn
. 

 

An obvious difference between the contraction mapping principle and 

Brouwer fixed-point theorem is the lack of uniqueness in the latter. In 

fact, trivial examples show that the fixed point may not be unique. 

 

It is a usual practise in mathematics that people try to approach an 

important theorem from various angles and obtain different proofs. There 

is no exception for Brouwer fixed-point theorem. After Brouwer’s 

topological proof, many different proofs have emerged. Our analytic 

proof is adapted from Dunford-Schwartz.  

 

In functional analysis the emphasis is on infinite dimensional spaces. 

Can this theorem be generalized to infinite dimension? We have learned 

that an essential difference between finite and infinite dimensions is the 

loss of compactness.  

 

It turns this phenomenon plays a role. Here is a counterexample. 

Consider the map Φ defined in the closed unit ball of  2
, {x ∈  2

: ||x||2 ≤ 

1}, given by Φ(x) = ((1 −       
 )

1/2
, x1, x2, · · · ). It is clear that this map 

is continuous into the ball itself (in fact, to its boundary). However, it 

does not have a fixed point.  
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For, if Φ(z) = z for some z in this ball, by equalling the components of 

Φ(z) and z we have z1 = z2 = z3 = · · · which implies z = (0, 0, 0 · · · ). 

But this is impossible from the first component: 

    

   1 −       
  =   

  

This example shows that continuity is not sufficient to ensure the 

existence of fixed points in infinite dimensional spaces. A most direct 

way is to restrict our attention to compact sets. 

The following result is a fixed-point theorem established by Schauder in 

1930. 

 

Theorem 11.2.4. Let C be a non-empty compact, convex set in the 

Banach space X. Every continuous map from C to itself has a fixed 

point. 

Proof. By compactness, for each 1/n we can cover C by finitely many 

balls B1/n(z1), · · · , B1/n(zN ) where the centers zj, j = 1, · · · , N, 

belong to C. Let Cn be the convex hull of these centers, that is, 

 

 

 

Each Cn is a compact convex set in some finite dimensional space. We 

define a map Pn from C to Cn by 

 

 

 

 

It is straightforward to verify that PN is continuous and satisfies 

 

 

 

in C. Now, consider the composite map Pn◦T and restrict it to Cn to 

obtain a continuous map from Cn to itself. Applying Brouwer fixed-point 

theorem to it, we obtain some xn in Cn satisfying Pn(T (xn)) = xn. 
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As Cn ⊂ C and C is compact, by passing to a subsequence if necessary, 

we may assume x0 = limn→∞ xn exists in C. Using the above estimate, we 

have 

 

 

 

Letting n → ∞, we conclude that kx0 − T (x0)k = 0, that is, x0 is a fixed 

point of T . The proof of Schauder fixed-point theorem is complete. 

 

Schauder fixed-point theorem is a very common tool in the study of 

partial differential equations. 

Let’s demonstrate its power through a simple case. 

Consider the ordinary differential equation 

 

 

 

 

There are two kinds of problems associated to this equation. The first one 

is the initial value problem, namely, we look for a solution u(x) satisfies 

(8.3) together with the initial conditions u(0) = a, u'(0) = b where a and b 

are prescribed values. The fundamental existence theorem of ODE’s 

asserts that this problem has a unique solution in some interval 

containing 0 when f(x, z, p) is sufficiently regular, for instance, it is 

continuously differentiable in (x, z, p) near (0, a, b). Alternatively, one 

may consider boundary value problems. For example, one may seek a 

solution of (11.1.3) which also satisfies the boundary conditions u(0) = α 

and u(1) = β. Boundary value problems arise from separation of variables 

in partial differential equations. 

 

Here for simplicity assume the continuous function f is independent of p 

and satisfies the structural condition 
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for some constants C1 and γ ∈ (0, 1). 

 

Proposition 11.2.5. Under condition (11.1.3), (11.1.2) has a solution 

satisfying u(0) = u(1) = 0. 

 

Proof. We know that (11.1.2) is equivalent to the integral equation 

 

 

 

where the integration is over [0, 1] and G is the Green function of the 

linear problem (q ≡ 0). It is known that G, ∂G/∂x, ∂G/∂y are continuous 

on [0, 1]×[0, 1]. We choose the space 

 

     X = {C[0, 1] : u(0) = u(1) = 0}  

with the sup-norm and define 

 

 

 

It is clear that T : X → X is continuous. Consider the closed and convex 

subset  

     C = {u ∈ X : ||u||∞, ||u'||∞ ≤ R}. 

 

As a direct consequence of Ascoli-Arzela theorem C is also compact. We 

claim that T maps C into C when R is sufficiently large. For, from 

(11.1.4), 

 

 

 

 

 

where M = sup x,y |G(x, y)|. Similarly, 
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where M1 = sup x,y |∂G/∂x(x, y)|. Since γ < 1, we can choose a large R0 so 

that 

 

 

 

With this choice of R0, T maps C into itself. 

Now we can apply Schauder fixed-point theorem to conclude that T 

admits a fixed point u ∈ C. In other words, 

 

 

 

so u solves (2). 

 

What happens when the exponent γ in (8.4) is larger or equal to one? 

Things become more delicate. 

We just point out that then a solution may not exist. Consider the special 

case 

 

 

 

 

Multiplying the equation by sin 2πx and then integrating over [0, 1], we 

obtain a necessary condition for solvability, namely, 

 

 

 

In particular, this problem does not admit a solution when ϕ(x) = sin 2πx. 

CHECK YOUR PROGRESS 

1. Explain : Every contraction on a complete metric space has a unique 

fixed point. 

 

 

 

2. State Brouwer fixed-point theorem 
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3. Provide the proof of Schauder fixed-point theorem 

 

 

 

11.3 LET’S SUM UP 
 

Starting from any initial point, the fixed point can be found as the limit 

of an iteration scheme. The contraction mapping principle has wide 

applications. It is used to establish the local solvability of the initial value 

problem of ordinary differential equations. Another standard application 

is the proof of the implicit function theorem. Schauder fixed-point 

theorem is a very common tool in the study of partial differential 

equations 

11.4 KEYWORDS 
 

Structural condition - structural properties of mathematical objects 

are usually characterized in one of two ways: either as properties 

expressible purely in terms of the primitive relations 

of mathematical theories, or as the properties that hold of all structurally 

similar mathematical objects 

Continuously differentiable -  A function f is said to be continuously 

differentiable if the derivative f′(x) exists and is itself 

a continuous function 

Without loss of generality - is a term used in proofs to indicate that an 

assumption is being made that does not introduce new restrictions to the 

problem. 

 

11.5 QUESTIONS FOR REVIEW 
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1. Prove : Every contraction on a complete metric space has a unique 

fixed point 

2.Complete the assumption and prove : f be twice continuously 

differentiable from B to B. 
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11.7 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide proof – 11.2.1  

2. Provide statement and proof– 11.2.2  

3. Provide statement and proof – 11.2.4 
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UNIT 12: NONLINEAR OPERATORS 

II 
 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.2 Calculus In Normed Spaces  

12.3 Let’s Sum up 

12.4 Keywords 

12.5 Questions For Review 

12.6 Suggested Readings 

12.7 Answers To Check Your Progress 

 

12.0 OBJECTIVE 
 

Understand the concept of Calculus in Normed Spaces 

Comprehend various theorems of Calculus in Normed Spaces 

Understand the application of Calculus in Normed Spaces 

12.1 INTRODUCTION 
 

Of crucial importance are the implicit and inverse function theorems 

which are proved by the contraction mapping principle. Finally, we 

discuss how to minimize a nonlinear functional over a subset in a Banach 

space. Recall that one valuable application of differentiation is to 

determine the critical points of a function. Similarly, in a function space 

a minimum of a certain functional is a critical point of this functional. 

This is a huge topic which has been split into different branches of 

mathematics such as the calculus of variations, optimization theory, 

control theory, etc. The reader may appreciate the use of convexity and 

weak topology in this context. 
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12.2 CALCULUS IN NORMED SPACES 
 

The concept of differentiability has a natural generalization to infinite 

dimensional space. Let F be a map from a set E in the normed space X to 

another normed space Y and x0 a point in E. The map F is said to be 

differentiable at x0 if there exists a bounded linear operator L ∈ B(X, Y ) 

such that 

 

in other words 

 

 

 

  

The linear operator is called the Fr`echet derivative or simply the 

derivative of F at x0. The map F is called differentiable on E if it is 

differentiable at every point of E. In this case, the derivative is a bounded 

linear operator depending on x ∈ E and usually is denoted by F’(x) or DF 

(x). We call F a C1-map if x ↦ F'(x) is continuous from E to B(X, Y ). 

Let’s consider two examples. 

 

First, let X = C
1
[0, 1] and Y = C[0, 1] under the C1- and sup-norms 

respectively. The map 

 

 

 

maps X to Y . To find its derivative we need to determine the linear 

operator F 0(u) such that 

 

 

 

Setting w = u + εϕ in the above, we see that in case F'(u) exists, we must 

have 
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at each u(t) and ϕ(t). Applying the chain rule in the variable ε, we readily 

obtain 

 

 

 

It is now a direct check using the definition that this expression indeed 

gives the derivative of F . Observe that it is linear on ϕ but nonlinear in 

u. 

Second, consider the nonlinear functional S : C1(Ω) → R given by 

 

 

  

where Ω is a bounded domain in Rn. This functional gives the surface 

area of the hypersurface {(x, u(x))} over Ω. Proceeding as above, its 

derivative is given by 

 

 

 

 

a bounded linear functional on C1(Ω) under the C1-norm. 

Here are some elementary properties of differentiability. 

 

Proposition 12.2.1 . Let X, Y and Z be normed spaces and E ⊂ X and N 

⊂ Y. 

 

(i) Let F, G : E → Y be differentiable at x. Then αF + βG is differentiable 

at x and  

    D(αF + βG)(x) = αDF (x) + βDG(x). 

 

(ii) Let F : E → N and G : N → Z be differentiable at x and F (x) 

respectively. Then G ◦ F is differentiable at x and 
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    D(G ◦ F )(x) = DG(F (x))DF (x). 

 

When F is differentiable (resp. C1) in E, f(E) ⊂ N and G is differentiable 

(resp. C1) in N, this proposition shows that G ◦ F is differentiable (resp. 

C1) in E. 

 

Let ϕ be a continuous map from the interval [a, b] to the Banach space X. 

When X = R, we can define the Riemann integral of ϕ over [a, b]. 

Likewise the same thing can be done in a Banach space. The old 

definition works, namely, ϕ is integrable on [a, b] if there exists an 

element z in X such that, for every ε > 0, there exists some δ > 0, so that 

 

 

 

for any partition P of [a, b] whose length is less than δ. The 

number z is called the integral of ϕ and will be denoted by ∫        
 

 
.. 

Be careful it is an element in X. Same as in the one dimensional case, any 

continuous map on [a, b] is integrable. 

 

Proposition 12.2.2. Let ϕ : [a, b] → X be continuous where X is a 

Banach space. 

(i) There holds 

 

 

 

 

(ii) For every Λ ∈ X0, 

 

 

 

 

(iii) If ϕ is a C1-map, then 
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Proof. (i) and (ii) follow directly from definition. For (iii), we observe 

that if ϕ(b) − ϕ(a) is not equal to ∫         
 

 
, Hahn-Banach theorem tells 

us that there exists some Λ1 ∈ X'such that 

 

 

 

 

However, by linearity and (ii), contradiction holds. 

 

 

 

 

 

 

 

Now we come to the fundamental inverse function theorem. Roughly 

speaking, it tells us that a map is locally invertible at a particular point if 

its linearization at the same point is invertible. 

 

Theorem 12.2.3. Let F : U → Y be a C1-map where X and Y are Banach 

spaces and U is open in X. Suppose that F (x0) = y0 and F'(x0) is 

invertible. There exist open sets V and W containing x0 and y0 

respectively such that the restriction of F on V is a bijection onto W with 

a C1-inverse. 

 

Recall that a bounded linear operator is invertible if its inverse exists and 

is bounded. 

Proof. Without loss of generality take x0, y0 = 0. First we would like to 

show that there is a unique solution for the equation F (x) = y for y near 

0. We shall use the contraction mapping principle to achieve our goal. 

For a fixed y, define the map in U by 
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where L = F'(0). It is clear that any fixed point of T is a solution to F (x) 

= y. We have 

 

 

 

 

 

We can find a small ρ0 such that 

 

Then for for each y in BR(0), ||L
−1

||R ≤ ρ0/2, T maps    
̅̅ ̅̅ ̅to itself. 

Moreover, for x1, x2 in B ρ0 (0), we have 

 

where we have applied Proposition 12.1.1 (ii) to ϕ(t) = F (x1 + t(x2 − 

x1)). Since F 0 is continuous in U, by further restricting ρ0 we may 

assume 

 

 

 

Consequently, 

 

 

 

 

 

We have shown that T :       ̅̅ ̅̅ ̅̅ ̅̅ ̅ →       ̅̅ ̅̅ ̅̅ ̅̅ ̅ is a contraction. By the 

contraction mapping principle, there is a unique fixed point for T , in 

other words, for each y in the ball BR(0) there is a unique point x in Bρ0 
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(0) solving F (x) = y. Defining G : BR(0) → B ρ0 (0) ⊂ X by setting G(y) 

= x, G is inverse to F . 

 

Next, we claim that G is continuous. In fact, for G(yi) = xi, i = 1, 2, 

 

 

which, by (1), implies that’s, G is continuous on BR(0). 

 

    ||G(y2) − G(y1)|| ≤ 2||L
−1

||||y2 − y1|| ,  (2) 

 

Finally, let’s show that G is a C1-map in BR(0). In fact, for y1, y1 + y in 

BR(0), using 

 

where R is given by 

 

 

As G is continuous and F is C1, we have 
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for small y. Using (2), we see that 

 

 

 

as ||y|| → 0. We conclude that G is differentiable with derivative equal to 

F'
−1

(G(y0)). The proof of the inverse function theorem is completed by 

taking W = BR(0) and V = F 
−1

(W ). 

 

Remark. Under the setting of Theorem 12.1.3, what happens if the 

invertibility of F'(x0) is replaced by surjectivity? Well, assume that X is 

the direct sum of X1 and X2 ≡ ker F'(x0). Then the following conclusion 

holds: There exist V1, V2 and W open subsets of X1, X2 and Y 

respectively and C1-map G : W → V1 × V2 such that for each x2 in X2, 

G(·, x2) is the inverse to F (·, x2). 

 

Next we deduce the implicit function theorem from the inverse function 

theorem. In fact, these two theorems are equivalent; in the exercise you 

are asked to give a self-contained proof of the implicit function theorem 

and deduce the inverse function theorem from the implicit function 

theorem. 

 

Theorem 12.2.4. Consider C1-map F : U → Z where U is an open set in 

the Banach spaces X × Y . Suppose (x0, y0) ∈ U and F (x0, y0) = 0. If 

Fy(x0, y0) is invertible from Y to Z, then there exist an open subset U1 × 

V1 of U containing (x0, y0) and a C1-map ϕ : U1 → V1, ϕ(x0) = y0, such 

that F (x, ϕ(x)) = 0 , ∀x ∈ U1 . 

Moreover, if ψ is a C1-map from U2, an open set containing x0, to Y 

satisfying F (x, ψ(x)) = 0 and ψ(x0) = y0, then ψ equals to ϕ in U1 ∩ U2. 

 

The notation F y(x0, y0) stands for the ―partial derivative‖ of F in y, that 

is, the derivative of F at y0 while x0 is fixed as a constant. 

Proof. Consider Φ : U → X × N given by 

     Φ(x, y) = (x, F (x, y)). 

By assumption 

   Φ'(x0, y0)(x, y) = (x, Fy(x0, y0)(x, y)) 
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is invertible from X × Y to X × Z. By the inverse function theorem, there 

exists some  

    Ψ = (Ψ1, Ψ2) :U1 × N1 → U  

 

which is inverse to Φ. For every (x, z) ∈ U1 × N1, we have 

 

    Φ(Ψ1(x, z), Ψ2(x, z)) = (x, z), 

 

which immediately implies 

 

    Ψ1(x, z) = x, and F ((Ψ1(x, z), Ψ2(x, z)) = z. 

 

In particular, taking z = 0 gives 

 

   (x, 0) = Φ(Ψ(x, 0)) = (x, F (x, Ψ2(x, 0)), ∀x ∈ U1, 

 

so the function ϕ(x) ≡ Ψ2(x, 0) satisfies our requirement. The uniqueness 

assertion can be easily established and is left to the reader. 

 

The implicit function theorem is indispensable in analysis. You will 

encounter many of its applications as you go along. Here we give a very 

simple one about the multiplicity of solutions to differential equations. 

 

Consider the boundary value problem 

 

 

 

 

where λ is a given number and g(y) is a function satisfying g(0) ≡ 0. 

Clearly the zero function is a trivial solution of this problem. An 

interesting question is, could it admit another solution? Taking the 

special case g ≡ 0 where the equation can be solved explicitly, we see 

that it has a nonzero solution if and only if λ = n
2
π

2
, n ∈ N. Indeed, the 

solutions are given by u(x) = c sin nπx, where c is an arbitrary nonzero 

constant.  
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A value at which nontrivial solutions exist arbitrarily near the trivial 

solution is called a bifurcation point. In this problem, every number n
2
π

2 

is a bifurcation point. In the general case, the zero function is still a 

trivial solution. We would like to know which λ is a bifurcation point. To 

this end, we take X, Y, and Z respectively to be R, {u ∈ C2[0, 1] : u(0) = 

u(1) = 0}, and C[0, 1] and  

 

    F (λ, u) = u" + λu + g(u).  

We have F (λ, 0) = 0 and 

 

 

 

Clearly Fy(λ, 0) is invertible if and only if λ is not equal to n
2
π

2
−gy(0), n 

∈ N. By the implicit function theorem, there exists an open set containing 

the zero function which does not contain any additional solution to the 

problem. Hence values not equal to n
2
π

2
− gy(0) cannot be bifurcation 

points. What happens when λ is equal to n
2
π

2
 − gy(0)? This is bifurcation 

theory. More information is required from g to obtain a conclusion. 

 

The technique in the proof of the inverse function theorem can be used to 

establish a nonlinear version of the open mapping theorem. 

 

Theorem 12.2.5. Let F be a C
1
-map from U to Y where U is open in X 

and X, Y are Banach spaces. Suppose that F 0(x) maps X onto Y for 

every x in U. Then F (U) is open in Y. 

 

Lemma 12.2.6. Let T ∈ B(X, Y ) be surjective where X and Y are Banach 

spaces. There exists a constant C such that 

 

  inf{kx − zk : z ∈ ker T} ≤ CkTxk, ∀x ∈ X 

 

Proof. Consider the quotient Banach space X ˜ = X/ ker T under the norm 
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The induced map   ̃ :   ̃ → Y given by   ̃  ̃= T x, x ∈    ̃ is a bounded 

linear operator onto Y . By Banach inverse mapping theorem T ˜ is 

invertible, that is, and the lemma follows. 

 

 

 

Proof of Theorem 12.2.5. It suffices to show that if F'(x0)(X) = Y where 

x0 ∈ U, there exist balls B ρ(x0) and BR(y0), y0 = F (x0), such that ⊂ 

BR(y0)F (Bρ(x0)). 

 

With ρ and R both small to be specified, for any fixed y in BR(y0) we 

define a sequence {xn} in B ρ/2(x0) as follows. First, find x'n+1 ∈ X such 

that 

 

 

 

Of course such point exists as T is onto. As 

 

 

 

for all z ∈ ker T by the above lemma, we could modify x0 n+1 by some 

element in ker T to get xn+1 satisfying 

 

 

 

Starting from n = 0, we have 

 

 

 

 

We can choose a small ρ such that 
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as long as {xn} stays in Bρ/2(x0). From the above estimate we have 

 

 

 

 

By choosing R < ρ/4, for every y ∈ BR(y0), {xn} ⊂ Bρ/2(x0). Moreover, 

 

 

 

 

as n > m, m → ∞. By completeness there is some x in Bρ(x0) such that x 

= limn→∞ xn. From T x = lim n→∞ Txn = lim n→∞ Txn+1 we deduce that x 

solves F (x) = y.  

 

Let F : U → Y be differentiable where U is open in X. Its derivative F 

0(x) belongs to B(X, Y ). It is twice differentiable  at x if F' : U → B(X, Y 

) is differentiable at x. The second (Fr`echet) derivative at x, denoted by 

F"(x) or D2F (x), belongs to B(X, B(X, Y )).  F is a C2-map if x ↦ F "(x) 

is continuous from U to B(X, B(x, Y )). 

 

There is a natural way to identify the space B(X, B(X, Y )) with the multi-

linear space M2(X, Y ) where X and Y are normed spaces. A map T : X × 

X → Y is a bilinear form from X to Y if T (x1, x2) is linear in x1 (resp. x2) 

while x2 (resp. x1) is fixed. All continuous, bilinear maps from X × X to 

Y form a vector space M2(X, Y ). For any such map T , define 

 

 

 

  

It is readily checked that (M2(X, Y ), k · k) forms a normed space, and it 

is complete when Y is complete. 

Given T ∈ B(X, B(X, Y )), define 
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It is routine to verify that T ↦  ̂ b established a norm-preserving 

isomorphism from B(X, B(X, Y )) to M2(X, Y ). Under this isomorphism 

we may identify B(X, B(X, Y )) with M2(X, Y ). It follows that the second 

derivative F"(x) may be regarded as a bilinear form with value in Y . In 

fact, the following proposition shows that it is symmetric. 

 

Proposition 12.2.7. Let F be a C2-map from U to Y where U is open in 

X and X, Y are normed spaces. Then 

 

Proof. For x1, x2 ∈ U and ε1, ε2 small, x + ε1x1 + ε2x2 ∈ U. Consider 

the C2-function ϕ given by 

 ϕ(ε1, ε2) = Λ (F (x + ε1x1 + ε2x2)) 

 

where Λ is in Y'. By the chain rule 

 

 

 

 

 

 

So, at (ε1, ε2) = (0, 0), 

 

 

 

 

 

 

The desired result follows from the relation ∂
2
ϕ/∂ε2∂ε1 = 

∂
2
ϕ/∂ε1∂ε2. 

Similarly one can define the m-th derivative of F and identify it with an 

m-linear function. Same as in this proposition, F (m)(x)(x1, · · · , xm) is 

symmetric in (x1, · · · , xm) when F is a Cm-map. 
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CHECK YOUR PROGRESS 

1. Explain calculus in Normed Spaces 

 

 

 

2. Define bifurcation point 

 

 

 

3. What do you understand by: inf{kx − zk : z ∈ ker T} ≤ CkTxk, ∀x ∈ X  

 

 

 

12.3 LET’S SUM UP 
 

The technique in the proof of the inverse function theorem can be used to 

establish a nonlinear version of the open mapping theorem. It may help 

to formulate and prove a version of Taylor’s expansion theorem in the 

infinite dimensional setting. 

12.4 KEYWORDS 
 

Bijection- In mathematics, a bijection, bijective function, one-to-one 

correspondence, or invertible function, is a function between the 

elements of two sets, where each element of one set is paired with 

exactly one element of the other set, and each element of the other set is 

paired with exactly one element of the first set. 

Unique point - a point refers usually to an element of some set called a 

space, unique is meant to capture the notion of a unique location in 

Euclidean space. 

Analysis - is a branch of mathematics which studies continuous changes 

and includes the theories of integration, differentiation, measure, limits, 
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analytic functions and infinite series. It is the systematic study of real and 

complex-valued continuous functions 

 

12.5 QUESTIONS FOR REVIEW 
 

1. Prove the proposition: Let X, Y and Z be normed spaces and E ⊂ X 

and N ⊂ Y. 

 

(i) Let F, G : E → Y be differentiable at x. Then αF + βG is differentiable 

at x and  

    D(αF + βG)(x) = αDF (x) + βDG(x). 

 

(ii) Let F : E → N and G : N → Z be differentiable at x and F (x) 

respectively. Then G ◦ F is 

differentiable at x and 

    D(G ◦ F )(x) = DG(F (x))DF (x). 

 

2.State the background of theorem 12.2.4 with proof. 
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12.7 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation – 12.2 

2.  Provide definition –12.2.4 

3. Provide statement and proof–12.2.6 
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UNIT 13: FOURIER ANALYSIS 
 

STRUCTURE 

13.0 Objective 

13.1 Introduction 

13.2 Convolutions On Commutative Groups 

13.3 Characters Of Commutative Groups 

13.4 Fourier Transform On Commutative Groups 

13.5 The Schwartz Space Of Smooth Rapidly Decreasing Functions 

13.6 Fourier Integral 

13.7 Let’s Sum up 

13.8 Keywords 

13.9 Questions For Review 

13.10 Suggested Readings 

13.11 Answers To Check Your Progress 

 

13.0 OBJECTIVE 
 

Understand the concept of Convolutions on Commutative Groups 

Comprehend the Characters of Commutative Groups 

Understand the application of Fourier Transform on Commutative 

Groups & The Schwartz space of smooth rapidly decreasing functions 

Enumerate the Fourier Integral 

 

13.1 INTRODUCTION 
 

In mathematics, Fourier analysis is the study of the way 

general functions may be represented or approximated by sums of 

simpler trigonometric functions.  
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 Fourier analysis grew from the study of Fourier series, and is named 

after Joseph Fourier, who showed that representing a function as a sum 

of trigonometric functions greatly simplifies the study of heat transfer. 

Today, the subject of Fourier analysis encompasses a vast spectrum of 

mathematics. In the sciences and engineering, the process of 

decomposing a function into oscillatory components is often called 

Fourier analysis, while the operation of rebuilding the function from 

these pieces is known as Fourier synthesis 

Our purpose is to map the commutative algebra of convolutions to a 

commutative algebra of functions with point-wise multiplication. To this 

end we first represent elements of the group as operators of 

multiplication. 

13.2 CONVOLUTIONS ON 

COMMUTATIVE GROUPS 
 

Let G be a commutative group, we will use + sign to denote group 

operation, respectively the inverse elements of g∈ G will be denoted −g. 

We assume that G has a Hausdorff topology such that operations 

(g1,g2)↦ g1+g2 and g↦ −g are continuous maps. We also assume that the 

topology is locally compact, that is the group neutral element has a 

neighbourhood with a compact closure. 

Example :  Our main examples will be as follows: 

1. G=ℤ the group of integers with operation of addition and the discrete 

topology (each point is an open set). 

2. G=ℝ the group of real numbers with addition and the topology 

defined by open intervals. 

3. G=T the group of Euclidean rotations the unit circle in ℝ2
 with the 

natural topology. Another realisations of the same group: 

o Unimodular complex numbers under multiplication. 

o Factor group ℝ/ℤ, that is addition of real numbers modulo 1. 

There is a homomorphism between two realisations given by z=e
2πi 

t
, t∈[0,1), | z |=1. 
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We assume that G has a regular Borel measure which is invariant in the 

following sense. 

 

Definition 13.2.1   Let µ be a measure on a commutative group G, µ is 

called invariant (or Haar measure) if for any measurable X and 

any g∈ G the sets g+X and −X are also measurable 

and µ(X)=µ(g+X)=µ(−X). 

Such an invariant measure exists if and only if the group is locally 

compact, in this case the measure is uniquely defined up to the constant 

factor. 

Exercise :   Check that in the above three cases invariant measures are: 

 G=ℤ, the invariant measure of X is equal to number of elements 

in X. 

 G=ℝ the invariant measure is the Lebesgue measure. 

 G=T the invariant measure coincides with the Lebesgue measure. 

 

Definition 13.2.2   A convolution of two functions on a commutative 

group G with an invariant measure µ is defined by: 

 

Theorem 13.2.3  If f1, f2∈L1(G,µ), then the integrals in exist (above 

definition 13.1.2) for almost every x∈ G, the function f1*f2 is 

in L1(G,µ) and ||f1*f2||≤ ||f1||·||f2||. 

 

Proof. If f1, f2∈L1(G,µ) then by Fubini’s Thm. 50 the function 

θ(x,y)=f1(x)*f2(y) is in L1(G× G, µ× µ) and ||θ||=||f1||· ||f2||. 

Let us define a map η: G× G → G× G such that η(x,y)=(x+y,y). It is 

measurable (send Borel sets to Borel sets) and preserves the measure 

µ×µ. Indeed, for an elementary set C=A× B⊂ G× G we have: 
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 we have an isometric isomorphism of L1(G× G,µ× µ) into itself by the 

formula: 

 

 

 

 

If we apply this isomorphism to the above function θ(x,y)=f1(x)*f2(y) we 

shall obtain the statement. 

 

Definition 13.2.4   Denote by S(k) the map S(k): f↦ k*f which we will 

call convolution operator with the kernel k. 

 

Corollary 13.2.5    If k∈L1(G) then the convolution S(k) is a bounded 

linear operator on L1(G). 

 

Theorem 13.2.6   Convolution is a commutative, associative and 

distributive operation. In particular S(f1)S(f2)=S(f2)S(f1)=S(f1*f2). 

Proof. Direct calculation using change of variables. 

 

It follows from Thm13.2.3 that convolution is a closed operation 

Tθ(x,y)=θ(η(x,y))=θ(x−y,y). 



Notes 

97 

on L1(G) and has nice properties due to Thm. 13.1.6. We fix this in the 

following definition. 

 

Definition 13.2.7   L1(G) equipped with the operation of convolution is 

called convolution algebra L1(G). 

The following operators of special interest. 

 

Definition 13.2.8   An operator of shift T(a) acts on functions 

by T(a): f(x)↦ f(x+a). 

 

Lemma 13.2.9   An operator of shift is an isometry of Lp(G), 1≤ p≤∞. 

 

Theorem 13.2.10   Operators of shifts and convolutions commute: 

    T(a)(f1*f2)=T(a)f1*f2=f1*T(a)f2, 

or 

    T(a)S(f)=S(f)T(a)=S(T(a)f). 

Proof. Just another calculation with a change of variables. 

 

Remark 13.2.11   Note that operator of shifts T(a) provide 

a representation of the group G by linear isometric operators 

in Lp(G), 1≤ p≤ ∞. A map f↦ S(f) is a representation of the convolution 

algebra There is a useful relation between support of functions and their 

convolutions. 

 

Lemma 13.2.12    For any f1, f2∈L1(G) we have: 

 

    supp(f1*f2)⊂supp(f1)+supp(f2). 

Proof. If x∉supp(f1)+supp(f2) then for any y∈supp(f2) we 

have x−y∉supp(f1). Thus for such x convolution is the integral of the 

identical zero. 

 

13.3 CHARACTERS OF COMMUTATIVE 

GROUPS 
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Definition 13.3.1  A character χ: G→ T is a continuous homomorphism 

of an abelian topological group G to the group T of unimodular complex 

numbers under multiplications: 

 

 

Note, that a character is an eigenfunction for a shift operator T(a) with 

the eigenvalue χ(a). Furthermore, if a function f on G is an eigenfunction 

for all shift operators T(a), a∈ G then the collection of respective 

eigenvalues λ(a) is a homomorphism of G to ℂ and f(a)=α λ(a) for some 

α∈ℂ. Moreover, if T(a) act by isometries on the space containing f(a) 

then λ(a) is a homomorphism to T. 

 

Lemma 13.3.2 The product of two characters of a group is again a 

character of the group. If χ is a character of G then χ
−1

=χ is a character as 

well. 

 

Proof. Let χ1 and χ2 be characters of G. Then: 

    χ1(gh)χ2(gh) = χ1(g)χ1(h)χ2(g)χ2(h) 

  =     (χ1(g)χ2(g))(χ1(h)χ2(h))∈T. 
 

 

Definition 13.3.3 The dual group Ĝ is collection of all characters 

of G with operation of multiplication. The dual group becomes a topological 

group with the uniform convergence on compacts: for any compact 

subset K⊂ G and any ε>0 there is N∈ℕ such that | χn(x)−χ(x) |<ε for 

all x∈ K and n>N. 

 

Example  If G=ℤ then any character χ is defined by its values χ(1) since 

 

 

 

 

Since χ(1) can be any number on T we see that $ℤ^_$ is parametrised 

by T. 

 

Theorem 13.3.4   The group $ℤ^_$ is isomorphic to T. 

    χ(x+y)=χ(x)χ(y). 

χ(n)=[χ(1)]
n
.     (2) 
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Proof. The correspondence from the above example is a group 

homomorphism. Indeed if χz is the character with χz(1)=z, then 

χz1χz2=χz1 z2. Since ℤ is discrete, every compact consists of a finite 

number of points, thus uniform convergence on compacts means point-

wise convergence. The equation (2) shows that χzn→ χz if and only if 

χzn(1)→ χz(1), that is zn→ z. 

 

Theorem 13.3.5   The group $T^_$ is isomorphic to ℤ. 

 

Proof. For every n∈ℤ define a character of T by the identity 

χn(z)=z
n
,     z∈T.     (3) 

 

We will show that these are the only characters . The isomorphism 

property is easy to establish. The topological isomorphism follows from 

discreteness of $T^_$. Indeed due to compactness of T for n≠ m: 

 

 

 

 

Thus, any convergent sequence (nk) have to be constant for sufficiently 

large k, that corresponds to a discrete topology on ℤ. 

 

The two last Theorems are an illustration to the following general 

statement. 

 

Principle 13.3.6 (Pontryagin’s duality)   For any locally compact 

commutative topological group G the natural map G→ Ĝ, such that it 

maps g∈ G to a character fg on Ĝ by the formula: 

fg(χ)=χ(g),      χ∈Ĝ,     (4) 

is an isomorphism of topological groups. 

Remark:   

1. The principle is not true for commutative group which are not 

locally compact. 

2. Note the similarity with an embedding of a vector space into the 

second dual. 



Notes 

100 

In particular, the Pontryagin’s duality tells that the collection of all 

characters contains enough information to rebuild the initial group. 

 

Theorem 13.3.7    The group $ℝ^_$ is isomorphic to ℝ. 

 

Proof. For λ∈ℝ define a character χλ∈$ℝ^_$ by the identity 

 

χλ(x)=e
2π i λ x

,      x∈ℝ.     (5) 

Moreover any smooth character of the group G=(ℝ, +) has the form (5). 

Indeed, let χ be a smooth character of ℝ.  

Put c=χ′(t)|t=0∈ ℂ.  

Then  

    χ′(t)=cχ(t) and χ(t)=e
ct
.  

We also get c∈ iℝ and any such c defines a character. Then the 

multiplication of characters is:  

     χ1(t)χ2(t)=e
c
1
t
e

c
2
t
=e

(c
2
+c

1
)t
.  

 

So we have a group isomorphism. 

 

For a generic character we can apply first the smoothing technique and 

reduce to the above case. 

Let us show topological homeomorphism. If λn→ λ then χλn→ 

χλ uniformly on any compact in ℝ from the explicit formula of the 

character. Reverse, let χλn→ χλ uniformly on any interval. Then 

χλn−λ(x)→ 1 uniformly on any compact, in particular, on [0,1]. But 

 

Thus λn→ λ. 

 

Corollary 13.3.8   Any character of the group T has the form (3). 

 

Proof. Let χ∈$T^_$, consider χ1(t)=χ(e
2π i t

) which is a character of ℝ. 

Thus χ1(t)=e
2π i λ t

 for some λ∈ℝ. Since χ1(1)=1 then λ=n∈ℤ. Thus 

χ1(t)=e
2π i n t

, that is χ(z)=z
n
 for z=e

2π i t
. 

 

http://www1.maths.leeds.ac.uk/~kisilv/courses/math3263m.html#eq%3Achar-T
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Remark 27   Although $ℝ^_$ is isomorphic to ℝ there is no a canonical 

form for this isomorphism (unlike for ℝ→ $ℝ^_$). Our choice is 

convenient for the Poisson formula below, however some other popular 

definitions are λ→ e
i λ x

 or λ→ e
−i λ x

. 

We can unify the previous three Theorem into the following statement. 

 

Theorem 13.3.9  Let G=ℝn
× ℤk

× T
l
 be the direct product of groups. 

Then the dual group is Ĝ=ℝn
× T

k
× ℤl

. 

 

CHECK YOUR PROGRESS 

1. Define Convolution 

 

 

 

2. State Pontryagin’s duality 

 

 

 

13.4 FOURIER TRANSFORM ON 

COMMUTATIVE GROUPS 
 

Definition 13.4.1  Let G be a locally compact commutative group with 

an invariant measure µ. For any f∈ L1(G) define the Fourier transform 

f by 

 

 

 

 

That is the Fourier transform f is a function on the dual group Ĝ. 

The important properties of the Fourier transform are captured in the 

following statement. 

 

Theorem 13.4.2   Let G be a locally compact commutative group with 

an invariant measure µ. The Fourier transform maps functions 
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from L1(G) to continuous bounded functions on Ĝ. Moreover, a 

convolution is transformed to point-wise multiplication: 

 

(f1*f2)^ (χ)=f1(χ)·f2(χ),     (7) 

a shift operator T(a), a∈ G is transformed in multiplication by the 

character fa∈Ĝ: 

 

(T(a)f)^ (χ)=fa(χ)·f(χ),     fa(χ)=χ(a)     (8) 

 

 

and multiplication by a character χ∈Ĝ is transformed to the shift T(χ
−1

): 

 

(χ· f)^ (χ1)=T(χ
−1

)f(χ1)=f(χ
−1

χ1).     (9) 

 

 

Proof. Let f∈L1(G). For any ε>0 there is a compact K⊂ G such that 

∫G∖ K | f | dµ<ε. If χn→ χ in Ĝ, then we have the uniform convergence of 

χn→ χ on K, so there is n(ε) such that for k>n(ε) we have | χk(x)−χ(x) | <ε 

for all x∈ K. Then 

 

                                                     ≤ 
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Thus f is continuous. Its boundedness follows from the integral 

estimations. Algebraic maps (7)–(9) can be obtained by changes 

of variables under integration. 

13.5 THE SCHWARTZ SPACE OF 

SMOOTH RAPIDLY DECREASING 

FUNCTIONS 
 

We say that a function f is rapidly decreasing if limx→ ±∞ | x
k
f(x) |=0 for 

any k∈ℕ. 

 

Definition 13.5.1    The Schwartz space denoted by S or space of rapidly 

decreasing functions on Rn is the space of infinitely differentiable 

functions such that: 

 

Example:An example of a rapidly decreasing function is the 

Gaussian e
−π x2

. 

 

It is worth to notice that S⊂ Lp(ℝ) for any 1<p<∞. Moreover, S is dense 

in Lp(ℝ), for p=1 this can be shown in the following steps (other values 

of p can be done similarly but require some more care). First we will 

show that S is an ideal of the convolution algebra L1(ℝ). 
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CHECK YOUR PROGRESS 

3. Explain Fourier Transform on Commutative Groups 

 

 

 

4. What is Schwartz space? 

 

 

 

13.6 FOURIER INTEGRAL 
 

Definition 13.6.1   We define the Fourier integral of a 

function f∈ L1(ℝ) by 

 

  

 

Lemma 13.6.2   The Fourier integral f of f∈L1(ℝ) has zero limits 

at −∞ and +∞. 

Proof. Take f the indicator function of [a,b]. Then f(λ )=1/−2π i λ (e
−2π i 

a
 −e

−2π i b
), λ≠ 0. Thus limλ→ ±∞ f(λ)=0. By continuity from the previous 

Lemma this can be extended to the closure of step functions, which is the 

space L1(ℝ) by Lem. 17. 

 

Lemma 13.6.3    If f is absolutely continuous on every interval 

and f′∈L1(ℝ), then 

     (f ')^=2πi λ f. 

 

 

More generally: 

 

 

 

(f 
(k)

)^=(2πi λ)
k
f.     (12) 
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Proof. A direct demonstration is based on integration by parts, which is 

possible because assumption in the Lemma. 

It may be also interesting to mention that the operation of 

differentiation D can be expressed through the shift operatot Ta: 

 

 

 

 

By the formula (8), the Fourier integral transforms 1/Δ t(TΔ t− I) into 

1/Δ t(χλ(Δ t)− 1). Providing we can justify that the Fourier integral 

commutes with the limit, the last operation is multiplication by 

χ′λ(0)=2πi λ. 

 

Corollary 13.6.4   If f
(k)∈L1(ℝ) then 

 

that is f decrease at infinity faster than | λ |
−k

. 

 

Lemma 13.6.5   Let f(x) and xf(x) are both in L1(ℝ), then f is 

differentiable and 

    f′=(−2 π i xf)^. 

 

 

More generally 

 

f
(k)

=((−2π i x)
k
 f)^.     (14) 

 

 

Proof. There are several strategies to prove these results, all having their 

own merits: 

1. The most straightforward uses the differentiation under the 

integration sign. 
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2. We can use the intertwining property (9) of the Fourier integral and 

the connection of derivative with shifts (13). 

3. Using the inverse Fourier integral (see below), we regard this Lemma 

as the dual to the Lemma 13.5.3. 

 

Corollary 13.6.6    The Fourier transform of a smooth rapidly decreasing 

function is a smooth rapidly decreasing function. 

 

Corollary 13.6.7   The Fourier integral of the Gaussian e
−π x2

 is e
−π λ 2

. 

 

Proof. Note that the Gaussian g(x)=e
−π x2

 is a unique (up to a factor) 

solution of the equation g′+2π x g=0. Then, by 

Lemmas 13.5.3and 13.5.5, its Fourier transform shall satisfy to the 

equation 2πi λ ĝ+ iĝ′=0. Thus, ĝ=c· e
−π λ 2

 with a constant factor c, its 

value 1 can be found from the classical integral ∫ℝ e
−π x2

 dx=1 which 

represents ĝ(0). 

The relation (12) and (13) allows to reduce many partial differential 

equations to algebraic one, to finish the solution we need the inverse of 

the Fourier transform. 

Definition 13.6.8   We define the inverse Fourier transform on L1(ℝ): 

 

 

 

 

We can notice the formal correspondence f(λ)=f(−λ)=f(λ), which is a 

manifestation of the group duality $ℝ^_$=ℝ for the real line. This 

immediately generates analogous results from Lem. 38 to Cor. 44 for the 

inverse Fourier transform. 

 

Theorem 13.6.9    The Fourier integral and the inverse Fourier transform 

are inverse maps. That is, if g=f then f=ǧ. 

 

Proof.  The outline of the proof is as follows. Using the intertwining 

relations (12) and (14), we conclude the composition of Fourier integral 

and the inverse Fourier transform commutes both with operator of 
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multiplication by x and differentiation. Then we need a result, that any 

operator commuting with multiplication by x is an operator of 

multiplication by a function f. For this function, the commutation with 

differentiation implies f′=0, that is f=const. The value of this constant can 

be evaluated by a Fourier transform on a single function, say the 

Gaussian e
−π x2

 . 

The above Theorem states that the Fourier integral is an invertible map. 

For the Hilbert space L2(ℝ) we can show a stronger property—its 

unitarity. 

 

Theorem 47 (Plancherel identity)   The Fourier transform extends 

uniquely to a unitary map L2(ℝ)→ L2(ℝ): 

 

 

 

 

Proof. The proof will be done in three steps: first we establish the 

identity for smooth rapidly decreasing functions, then for L2 functions 

with compact support and finally for any L2 function. 

1. Take f1 and f2∈S be smooth rapidly decreasing functions 

and g1 and g2 be their Fourier transform 

 

 

 

 

 

 

 

 

 

 

 

Put f1=f2=f (and therefore g1=g2=f) we get the identity ∫| f |
2
 dx=∫| f |

2
 dλ. 

The same identity (16) can be obtained from the property (f1f2)^=f1*f2, 

cf. (7), or explicitly: 
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1. Now, substitute λ=0 and f2=f1 (with its corollary f2(t)=f1(−t)) and 

obtain (16). 

2. Next let f∈L2(ℝ) with a support in (−a,a) then f∈L1(ℝ) as well, thus 

the Fourier transform is well-defined. Let fn∈S be a sequence with 

support on (−a,a) which converges to f in L2 and thus in L1. The 

Fourier transform gn converges to g uniformly and is a Cauchy 

sequence in L2 due to the above identity. Thus gn→ g in L2 and we 

can extend the Plancherel identity by continuity to L2 functions with 

compact support. 

3. The final bit is done for a general f∈L2 the sequence 

 

 

 

 

 

of truncations to the interval (−n,n). For fn the Plancherel identity is 

established above, and fn→ f in L2(ℝ). We also build their Fourier 

images gn and see that this is a Cauchy sequence in L2(ℝ), so gn→ g. 

 

If f∈L1∩L2 then the above g coincides with the ordinary Fourier 

transform on L1. 

We note that Plancherel identity and the Parseval’s identity are cousins—

they both states that the Fourier transform L2(G)→ L2(Ĝ) is an isometry 

for G=ℝ and G=T respectively. They may be combined to state the 

unitarity of the Fourier transform on L2(G) for the group G=ℝn
× ℤk

× 

T
l
 cf.  

13.7 LET’S SUM UP 
 

The technique in the proof of the inverse function theorem can be used to 

establish a nonlinear version of the open mapping theorem. It may help 
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to formulate and prove a version of Taylor’s expansion theorem in the 

infinite dimensional setting. 

Plancherel identity and the Parseval’s identity combined to state the 

unitarity of the Fourier transform 

13.8 KEYWORDS 
 

Truncating a Number. A method of approximating a decimal number by 

dropping all decimal places past a certain point without rounding 

Extend: Extension (predicate logic), the set of tuples of values that 

satisfy the predicate. Extension (semantics), the set of things to which a 

property applies 

Convergence, in mathematics, property (exhibited by certain infinite 

series and functions) of approaching a limit more and more closely as an 

argument (variable) of the function increases or decreases or as the 

number of terms of the series increases. 

 

13.9 QUESTIONS FOR REVIEW 
1.   Suppose that the function f1 is compactly supported and k times 

continuously differentiate in ℝ, and that the function f2 belongs to L1(ℝ). 

Prove that the convolution f1* f2 has continuous derivatives up to order k. 

2. Check that 

If X is a compact set then the topology of uniform convergence on 

compacts and the topology uniform convergence on X coincide. 

 3. For any g∈ S and f ∈ L1(ℝ) with compact support their 

convolution f*g belongs to S. Define the family of functions gt(x) for t>0 

in S by scaling the Gaussian: 
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13.11 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition– 13.2.2 

2.  Provide statement –13.3.6 

3. Provide definition–13.4.1 

4. Provide definition and example – 13.5.1 



111 

UNIT 14: MEASURE THEORY 
 

STRUCTURE 

14.0 Objective 

14.1 Introduction 

14.2 Basic Measure Theory 

14.3 Extension Of Measures 

14.4 Complex-Valued Measures And Charges 

14. 5 Constructing Measures, Products 

14.6 Let’s Sum up 

14.7 Keywords 

14.8 Questions For Review 

14.9 Suggested Readings 

14.10 Answers To Check Your Progress 

 

14.0 OBJECTIVE 
 

Understand the Basic Measure Theory 

Enumerate Extension of Measures 

Comprehend the Characters of Commutative Groups 

Understand the Complex-Valued Measures and Charges 

How to Construct Measures, Products 

14.1 INTRODUCTION 
 

A measurable space is a set S, together with a non-empty collection, S, of 

subsets of S, satisfying the following two conditions: 1. For any A, B in 

the collection S, the set1 A – B is also in S. 2. For any A1 , A2 , … S, Ai 

S. The elements of S are called measurable sets. These two conditions 

are summarised by saying that the measurable sets are closed under 

taking finite differences and countable unions. 



Notes 

112 

14.2 BASIC MEASURE THEORY 
 

Definition 14.2.1   Let X be a set. A ζ-algebra R on X is a collection of 

subsets of X, written R⊆ 2
X
, such that 

1. X∈R; 

2. if A,B∈R, then A∖ B∈R; 

3. if (An) is any sequence in R, then ∪n An∈R. 

Note, that in the third condition we admit any countable unions. The 

usage of ―ζ‖ in the names of ζ -algebra and ζ-ring is a reference to this. 

If we replace the condition by if (An)1
m
 is any finite family in R, then 

∪n=1
m
 An∈R; 

then we obtain definitions of an algebra. 

For a ζ-algebra R and A,B∈R, we have 

 

 

 

Similarly, R is closed under taking (countably) infinite intersections. 

If we drop the first condition from the definition of (ζ-)algebra (but keep 

the above conclusion from it!) we got a (ζ-)ring, that is a (ζ-)ring is 

closed under (countable) unions, (countable) intersections and 

subtractions of sets. 

Sets Ak are pairwise disjoint if An∩ Am=  for n≠m. We denote the union 

of pairwise disjoint sets by ⊔, e.g. A ⊔ B ⊔ C. 

It is easy to work with a vector space through its basis. For a ring of sets 

the following notion works as a helpful ―basis‖. 

 

Definition 14.2.2    A semiring S of sets is a collection such that 

1. it is closed under intersection; 

2. for A, B∈ S we have A∖ B=C1⊔ … ⊔ CN with Ck∈ S. 

Again, any non-empty semiring contain the empty set. 

 

Example   The following are semirings but not rings: 
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1. The collection of intervals [a,b) on the real line; 

2. The collection of all rectangles { a≤ x < b, c≤ y <d } on the plane. 

 

As the intersection of a family of ζ-algebras is again a ζ-algebra, and the 

power set 2
X
 is a ζ-algebra, it follows that given any collection D⊆ 2

X
, 

there is a ζ-algebra R such that D⊆R, such that if S is any other ζ-

algebra, with D⊆S, then R⊆S. We call R the ζ-algebra generated by D. 

 

We introduce the symbols +∞, −∞, and treat these as being ―extended 

real numbers‖, so −∞ < t < ∞ for t∈ℝ. We define t+∞ = ∞, t∞ = ∞ if t>0 

and so forth. We do not (and cannot, in a consistent manner) define ∞ − 

∞ or 0∞. 

 

Definition 14.2.3  A measure is a map µ:R→[0,∞] defined on a (semi-

)ring (or ζ-algebra) R, such that if A=⊔n An for A∈R and a finite 

subset (An) of R, then µ (A) = ∑n µ(An). This property is 

called additivity of a measure. 

 

In analysis we are interested in infinities and limits, thus the following 

extension of additivity is very important. 

 

Definition 14.2.4   In terms of the previous definition we say 

that µ is countably additive (or ζ-additive) if for any countable infinite 

family (An) of pairwise disjoint sets from R such that A=⊔n An∈R we 

have µ(A) = ∑n µ(An). If the sum diverges, then as it will be the sum of 

positive numbers, we can, without problem, define it to be +∞. 

Example   

1. Fix a point a∈ℝ and define a measure µ by the 

condition µ(A)=1 if a∈ A and µ(A)=0 otherwise. 

2. For the ring obtained in Exercise 5 from semiring S in 

Example 1 define µ([a,b))=b−a on S. This is a measure, and we will 

show its ζ-additivity. 

 

 

http://www1.maths.leeds.ac.uk/~kisilv/courses/math3263m.html#ex%3Aring-gen-semiring
http://www1.maths.leeds.ac.uk/~kisilv/courses/math3263m.html#it%3Asemiring-interv
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3. For ring obtained in Exercise 5 from the semiring in Example 2, 

define µ(V)=(b−a)(d−c) for the rectangle V={ a≤ x < b, c≤ y <d } S. 

It will be again a ζ-additive measure. 

4. Let X=ℕ and R=2ℕ, we define µ(A)=0 if A is a finite subset 

of X=ℕ and µ(A)=+∞ otherwise. Let An={n}, 

then µ(An)=0 and µ(⊔n An)=µ(ℕ)=+∞≠ ∑n µ(An)=0. Thus, this 

measure is not ζ-additive. 

 

Definition 14.2.5   A measure µ is finite if µ(A)<∞ for all A∈ R. 

A measure µ is ζ-finite if X is a union of countable number of sets Xk, 

such that for any A∈ R and any k∈ ℕ the intersection A∩ Xk is 

in R and µ(A∩ Xk)<∞. 

 

Proposition 14.2.6   Let µ be a ζ-additive measure on a ζ-algebra R. 

Then: 

1. If A,B∈R with A⊆ B, then µ(A)≤µ(B) [we call this property 

―monotonicity of a measure‖]; 

2. If A,B∈R with A⊆ B and µ(B)<∞, then µ(B∖ A) = µ(B) − µ(A); 

3. If (An) is a sequence in R, with A1 ⊆ A2 ⊆ A3 ⊆⋯. Then 

 

 

 

 

If (An) is a sequence in R, with A1 ⊇ A2 ⊇ A3 ⊇⋯. If µ(Am)<∞ for 

some m, then 

 

 

 

 

Proof. The two first properties are easy to see. For the third statement,  

define  

A=∪n An, B1=A1 and Bn=An∖ An−1, n>1.  

Then  

An=⊔k=1
n
 Bn and A=⊔k=1

∞
Bn.  

Using the ζ-additivity of measures  

http://www1.maths.leeds.ac.uk/~kisilv/courses/math3263m.html#ex%3Aring-gen-semiring
http://www1.maths.leeds.ac.uk/~kisilv/courses/math3263m.html#it%3Asemiring-rect
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    µ(A)=∑k=1
∞
µ(Bk) and µ(An)=∑k=1

n
 µ(Bk).  

 

From the theorem in real analysis that any monotonic sequence of real 

numbers converges (recall that we admit +∞ as limits’ value) we have  

 

   µ(A)=∑k=1
∞
µ(Bk)=limn→ ∞ ∑k=1

n
 µ(Bk) = limn→ ∞ µ(An).  

 

The last statement can be shown similarly. 

 

14.3 EXTENSION OF MEASURES 

 

From now on we consider only finite measures; an extension to ζ-finite 

measures will be done later. 

Proposition 14.3.1   Any measure µ′ on a semiring S is uniquely 

extended to a measure µ on the generated ring R(S). If the initial 

measure was ζ-additive, then the extension is ζ-additive as well. 

Proof. If an extension exists it shall satisfy µ(A)=∑k=1
n
 µ′(Ak), 

where Ak∈ S. We need to show for this definition two elements: 

 

1. Consistency, i.e. independence of the value from a presentation 

of A∈ R(S) as A=⊔k=1
n
 Ak, where Ak∈ S. For two different 

presentation A=⊔j=1
n
 Aj and A=⊔k=1

m
 Bk define Cjk=Aj∩ Bk, which will 

be pair-wise disjoint. By the additivity of µ′ we have µ′(Aj)=∑kµ′(Cjk) 

and µ′(Bk)=∑jµ′(Cjk). Then 

 

 

 

 

Additivity. For A=⊔k=1
n
 Ak, where Ak∈ R(S) we can 

present Ak=⊔j=1
n(k)

 Cjk, Cjk∈ S. 

Thus A=⊔k=1
n
 ⊔j=1

n(k)
 Cjk and: 
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Finally, show the ζ-additivity. For a set A=⊔k=1
∞
Ak, 

where A and Ak∈ R(S), find 

presentations A=⊔j=1
n
 Bj, Bj∈ S and Ak=⊔l=1

m(k)
 Blk, Blk∈ S. 

Define Cjlk=Bj ∩ Blk∈ S, then Bj=⊔k=1
∞⊔l=1

m(k)
 Cjlk and Ak= 

⊔j=1
n
 ⊔l=1

m(k)
 Cjlk Then, from ζ-additivity of µ′: 

 

where we changed the summation order in series with non-negative 

terms. 

Definition 14.3.2   Let S be a semi-ring of subsets in X, and µ be a 

measure defined on S. An outer measure µ
*
 on X is a 

map µ
*
:2

X
→[0,∞] defined by: 

 

 

 

 

 

Proposition 14.3.3   An outer measure has the following properties: 

1. µ
*
( )=0; 

2. if A⊆ B then µ
*
(A)≤µ

*
(B), this is called monotonicity of the 

outer measure; 

3. if (An) is any sequence in 2
X
, then µ

*
(∪n An) ≤ ∑n µ

*
(An). 

 

The final condition says that an outer measure is countably sub-additive. 

Note, that an outer measure may be not a measure in the sense of 

Defn. 6 due to a luck of additivity. 

Example:   The Lebesgue outer measure on ℝ is defined out of the 

measure, that is, for A⊆ℝ, as 
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We make this definition, as intuitively, the ―length‖, or measure, of the 

interval [a,b) is (b−a). 

For example, for outer Lebesgue measure we have µ
*
(A)=0 for any 

countable set, which follows, as clearly µ
*
({x})=0 for any x∈ℝ. 

 

Lemma 14.3.4   Let a<b. Then µ
*
([a,b])=b−a. 

 

Proof. For є>0, as [a,b] ⊆ [a,b+є), we have that µ
*
([a,b])≤ (b−a)+є. As 

є>0, was arbitrary, µ
*
([a,b]) ≤ b−a. 

To show the opposite inequality we observe that [a,b)⊂[a,b] and µ
*
[a,b) 

=b−a (because [a,b) is in the semi-ring) so µ
*
[a,b]≥ b−a by 2 

Our next aim is to construct measures from outer measures. We use the 

notation A B=(A∪ B)∖ (A∩ B) for symmetric difference of sets. 

 

Definition 14.3.5 Given an outer measure µ
*
 defined by a measure µ on a 

semiring S, we define A⊆ X to be Lebesgue measurable if for any ε 

>0 there is a finite union B of elements in S (in other words: B∈R(S) ), 

such that µ
*
(A   B)<ε . 

Obviously all elements of S are measurable. An alternative definition of a 

measurable set is due to Carathéodory. 

 

Definition 14.3.6   Given an outer measure µ
*
, we define E⊆ X to 

be Carathéodory measurable if 

    µ
*
(A) = µ

*
(A⋂ E) + µ

*
(A∖ E), 

 

 

for any A⊆ X. 

As µ
*
 is sub-additive, this is equivalent to 

 

 

 

 

as the other inequality is automatic. 

  µ
*
(A) ≥ µ

*
(A⋂ E) + µ

*
(A∖ E)      (A⊆ X),  

 

 



Notes 

118 

Suppose now that the ring R(S) is an algebra (i.e., contains the maximal 

element X). Then, the outer measure of any set is finite, and the 

following theorem holds: 

 

Theorem 14.3.7 (Lebesgue)   Let µ
*
 be an outer measure on X defined 

by a semiring S, and let L be the collection of all Lebesgue measurable 

sets for µ
*
. Then L is a ζ-algebra, and if µ′ is the restriction of µ

*
 to L, 

then µ′ is a measure. Furthermore, µ′ is ζ-additive on L if µ is ζ-additive 

on S. 

 

Proof. Clearly, R(S)⊂ L. Now we show that µ
*
(A)=µ(A) for a 

set A∈ R(S). If A⊂∪k Ak for Ak ∈ S, then µ(A)≤ ∑k µ(Ak), taking the 

infimum we get µ(A)≤µ
*
(A). For the opposite inequality, any A∈ R(S) 

has a disjoint representation A=⊔k Ak, Ak∈ S, thus µ
*
(A)≤ ∑k µ(Ak)=µ(A). 

Now we will show that R(S) is an incomplete metric space, with the 

measure µ being uniformly continuous functions. Measurable sets make 

the completion of R(S) with µ being continuation of µ
*
 to the completion 

by continuity. 

Define a distance between elements A, B∈ L as the outer measure of the 

symmetric difference of A and B: d(A,B)=µ
*
(A  B). Introduce 

equivalence relation A∼ B if d(A,B)=0 and use the inclusion for the 

triangle inequality: 

 

    A   B ⊆ (A C) ⋃ (C B) 

Then, by the definition, Lebesgue measurable sets make the closure 

of R(S) with respect to this distance. 

We can check that measurable sets form an algebra. To this end we need 

to make estimations, say, of µ
*
((A1∩ A2)   (B1∩ B2)) in terms of 

µ
*
(Ai Bi). A demonstration for any finite number of sets is performed 

through mathematical inductions. The above two-sets case provide both: 

the base and the step of the induction. 

 

Now, we show that L is ζ-algebra. Let Ak∈ L and A=∪k Ak. Then for any 

ε>0 there exists Bk∈ R(S), such that µ
*
(Ak▵ Bk)<ε/2

k
. Define B=∪k Bk. 

Then 
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implies  µ
*
(A   B)<ε. 

We cannot stop at this point since B=∪k Bk may be not in R(S). Thus, 

define B′1=B1 and B′k=Bk∖ ∪i=1
k−1

 Bi, so B′k are pair-wise disjoint. 

Then B=⊔k B′k and B′k∈R(S). From the convergence of the series there 

is N such that ∑k=N
∞
µ(B′k)<ε . Let B′=∪k=1

N
 B′k, which is in R(S). Then 

µ
*
(B▵ B′)≤ ε and, thus, µ

*
(A▵ B′)≤ 2ε. 

To check that µ
*
 is measure on L we use the following 

 

Lemma 14.3.8   | µ
*
(A)−µ

*
(B) |≤ µ

*
(A   B), that is µ

*
 is uniformly 

continuous in the metric d(A,B). 

Proof.[Proof of the Lemma] Use inclusions A⊂ B∪(A   B) 

and B⊂ A∪(A   B). 

 

To show additivity take A1,2∈L , A=A1⊔ A2, B1,2∈R(S) and µ
*
(Ai▵ Bi)<ε. 

Then µ
*
(A   (B1∪ B2))<2ε and | µ

*
(A) − µ

*
(B1∪ B2) |<2ε. Thus 

µ
*
(B1∪ B2)=µ(B1∪ B2)=µ (B1) +µ (B2)−µ (B1∩ B2), but µ 

(B1∩ B2)=d(B1∩ B2, )=d(B1∩ B2,A1∩ A2)<2ε. Therefore 

 

 

 

Combining everything together we get: 

 

 

 

Thus µ
*
 is additive. 

Check the countable additivity for A=⊔k Ak. The inequality µ
*
(A)≤ 

∑kµ
*
(Ak) follows from countable sub-additivity. The opposite inequality 

is the limiting case of the finite inequality µ
*
(A)≥ 
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µ
*
(⊔k=1

N
 Ak)=∑k=1

N
µ

*
(Ak) following from additivity and monotonicity of 

µ
*
. 

Corollary 14.3.9   Let E⊆ℝ be open or closed. Then E is Lebesgue 

measurable. 

Proof. This is a common trick, using the density and the countability of 

the rationals. As ζ-algebras are closed under taking complements, we 

need only show that open sets are Lebesgue measurable. 

 

Intervals (a,b) are Lebesgue measurable by the very definition. Now 

let U⊆ℝ be open. For each x∈ U, there exists ax<bx with x∈(ax,bx)⊆ U. 

By making ax slightly larger, and bx slightly smaller, we can ensure 

that ax,bx∈ℚ. Thus U = ∪x (ax, bx). Each interval is measurable, and there 

are at most a countable number of them (endpoints make a countable set) 

thus U is the countable (or finite) union of Lebesgue measurable sets, 

and hence U is Lebesgue measurable itself. 

We perform now an extension of finite measure to ζ-finite one. Let µ be 

a ζ-additive and ζ-finite measure defined on a semiring in X=⊔k Xk, such 

that the restriction of µ to every Xk is finite. Consider the Lebesgue 

extension µk of µ defined within Xk. A set A⊂ X is measurable if every 

intersection A∩ Xk is µk measurable. For a such measurable set A we 

define its measure by the identity: 

 

 

 

 

We call a measure µ defined on L complete if whenever E⊆ X is such 

that there exists F∈L with µ(F)=0 and E⊆ F, we have that E∈L. 

Measures constructed from outer measures by the above theorem are 

always complete. On the example sheet, we saw how to form a complete 

measure from a given measure. We call sets like E null sets: complete 

measures are useful, because it is helpful to be able to say that null sets 

are in our ζ-algebra. Null sets can be quite complicated. For the 

Lebesgue measure, all countable subsets of ℝ are null, but then so is the 

Cantor set, which is uncountable. 

 



Notes 

121 

Definition 14.3.10   If we have a property P(x) which is true except 

possibly x∈ A and µ(A)=0, we say P(x) is almost everywhere or a.e.. 

 

CHECK YOUR PROGRESS 

1. Define countably additive 

 

 

 

2. Explain : Any measure µ′ on a semiring S is uniquely extended to a 

measure µ on the generated ring R(S). If the initial measure was ζ-

additive, then the extension is ζ-additive as well. 

 

 

 

3. What is outer measure & explain its properties. 

 

 

 

14.4 COMPLEX-VALUED MEASURES 

AND CHARGES 
 

We start from the following observation. 

 

Definition 14.4.1   Let X be a set, and R be a ζ-ring. A real- (complex-) 

valued function ν on R is called a charge (or signed measure) if it is 

countably additive as follows: for any Ak∈R the identity A=⊔k Ak implies 

the series ∑k ν(Ak) is absolute convergent and has the sum ν(A). 

In the following “charge” means “real charge”. 

 

Example    Any linear combination of ζ-additive measures on ℝ with 

real (complex) coefficients is real (complex) charge. 

The opposite statement is also true: 
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Theorem 14.4.2  Any real (complex) charge ν has a 

representation ν=µ1−µ2 (ν=µ1−µ2+iµ3−iµ4), where µk are ζ-additive 

measures. 

To prove the theorem we need the following definition. 

 

Definition 14.4.3  The variation of a charge on a set A is | ν |(A)=sup 

∑k| ν(Ak) | for all disjoint splitting A=⊔k Ak. 

 

ExampleIf ν=µ1−µ2, then | ν |(A)≤ µ1(A)+µ2(A). The inequality becomes 

an identity for disjunctive measures on A (that is there is a 

partition A=A1⊔ A2 such that µ2(A1)=µ1(A2)=0). 

The relation of variation to charge is as follows: 

 

Theorem 14.4.4    For any charge ν the function | ν | is a ζ-additive 

measure.Finally to prove the Thm. 14.3.2  we use the following 

 

Proposition 14.4.5   For any charge ν the function | ν |−ν is a ζ-additive 

measure as well. From the Thm. 14.3.2   we can deduce 

 

Corollary 14.4.6  The collection of all charges on a ζ-algebra R is a 

linear space which is complete with respect to the distance: 

 

 

 

 

The following result is also important: 

 

Theorem 14.4.7  (Hahn Decomposition)   Let ν be a charge. There 

exist A,B∈L, called a Hahn decomposition of (X,ν), 

with A∩ B= , A∪ B= X and such that for any E∈L, 

 

 

 

This need not be unique. 

 

    ν (A⋂ E) ≥ 0,    ν(B⋂ E)≤ 0.  
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Proof. We only sketch this. We say that A∈L is positive if 

 

    ν(E⋂ A)≥0      (E∈L),  

 

 

and similiarly define what it means for a measurable set to be negative. 

Suppose that ν never takes the value −∞ (the other case follows by 

considering the charge −ν). Let β = infν(B0) where we take the infimum 

over all negative sets B0. If β=−∞ then for each n, we can find a 

negative Bn with ν(Bn)≤ −n. But then B=∪n Bn would be negative with 

ν(B)≤ −n for any n, so that ν(B)=−∞ a contradiction. 

 

So β>−∞ and so for each n we can find a negative Bn ν(Bn) < β+1/n. 

Then we can show that B = ∪n Bn is negative, and argue that ν(B) ≤ β. 

As B is negative, actually ν(B) = β. There then follows a very tedious 

argument, by contradiction, to show that A=X∖ B is a positive set. Then 

(A,B) is the required decomposition. 

 

14.5 CONSTRUCTING MEASURES, 

PRODUCTS 
 

Consider the semiring S of intervals [a,b). There is a simple description 

of all measures on it. For a measure µ define 

 

 

 

 

 

Fµ is monotonic and any monotonic function F defines a measure µ 

on S by the by µ([a,b))=F(b)−F(a). The correspondence is one-to-one 

with the additional assumption F(0)=0. 

 

Theorem 14.5.1   The above measure µ is ζ-additive on S if and only 

if F is continuous from the left: F(t−0)=F(t) for all t∈ℝ. 
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Proof. Necessity: F(t)−F(t−0)=limε→ 0µ([t−ε,t))=µ(limε→ 0[t−ε,t))=µ()=0, 

by the continuity of a ζ-additive measure. 

For sufficiency assume [a,b)=⊔k [ak,bk). The inequality µ([a,b))≥ 

∑k µ([ak,bk)) follows from additivity and monotonicity. For the opposite 

inequality take δk s.t. F(b)−F(b−δ)<ε and F(ak)−F(ak−δk)<ε/2
k
 (use left 

continuity of F). Then the interval [a,b−δ] is covered by (ak−δk,bk), due 

to compactness of [a,b−δ] there is a finite subcovering. Thus  

 

    µ([a,b−δ ))≤∑j=1
N
 µ([akj−δkj,bkj)). 

 

CHECK YOUR PROGRESS 

4. What is charge?  

 

 

 

5. Provide statement for Hahn Decomposition 

 

 

 

14.6 LET’S SUM UP 
 

We Understood the Basic Measure Theory and Extension of Measures 

We got clarity about Characters of Commutative Groups and  Understood 

the Complex-Valued Measures and Charges How to Construct Measures, 

Products 

14.7 KEYWORDS 
 

Consistency - In mathematics and in particularly in algebra, a linear or 

nonlinear system of equations is called as consistent if there is at least 

one set of values for the unknowns that satisfies each equation in the 

system—that is, that when substituted into each of the equations makes 

each equation hold true as an identity. 
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Semi-ring - In abstract algebra, a semiring is an algebraic structure 

similar to a ring, but without the requirement that each element must 

have an additive inverse. 

 

A monotonic function is a function which is either entirely 

nonincreasing or nondecreasing. A function is monotonic if its first 

derivative (which need not be continuous) does not change sign. 

 

14.8 QUESTIONS FOR REVIEW 
 

1.    Show that the empty set belongs to any non-empty ring. 

2.  Let S be a semiring. Show that the collection of all finite disjoint 

unions ⊔k=1
n
 Ak, where Ak∈ S, is a ring. We call it the ring R(S) 

generated by the semiring S. 

3. Show that measurability by Lebesgue and Carathéodory are 

equivalent. 
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14.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition– 14.2.4 

2.  Provide proof–14.3.1 

3. Provide definition–14.3.2 & 14.3.3 

4. Provide definition and example – 14.4.1 

5. Provide statement – 14.4.7 

 


